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Foreword

Software libraries are important tools in the use of computers. Libraries for scientific and
engineering applications embody expert knowledge of data structures, algorithms,
operating systems, compilers, computer architecture, applied mathematics, and
numerical analysis. Libraries enhance productivity not only by providing
preprogrammed functions, but, what is more important, by providing functions that have
well-understood and documented storage requirements, execution time, and numerical
behavior. Libraries make the architecture of computers more transparent to a user than
programming languages by defining functions at a sufficiently high level for optimization
beyond the capabilities of compilers. The portability of user programs is enhanced with
respect to both performance and numerical behavior. Libraries substantially lower the
cost of computation, improve productivity, and enhance the quality of the end result.

Developments in computer architecture represent particularly strong forces behind the
evolution of libraries for high-performance computers. The new generation of
high-performance architectures, scalable to several trillion operations per second,
r ’ consists of thousands of processing units with local memories, and a network
¢ interconnecting the processor and memory units. The performance optimization of
functions to be executed on such architectures requires careful attention to data
allocation, data motion in distributed data structures, memory hierarchies, load
balancing, and scheduling of pipelines. Fundamental changes of classical algorithms may
be required. The efficient use of such scalable computer architectures is beyond the
capability of state-of-the-art compiler technology.

Libraries provide significantly more powerful constructs than those available in most
programming languages. The invocation of a library routine implies that a function be
applied to the objects defined in a programming language, and that information about the
objects be extracted, transformed, or used to generate new objects. The array syntax of
recently introduced programming languages has a profound impact on the interface to a
library and on its functionality and design. The array syntax of programming languages
is in part motivated by the emergence of parallel computer architectures, particularly data
parallel architectures. Concurrency occurs both in applying high-level functions to
disjoint data sets, sometimes defined through a recursive procedure, and in each
application of the function.

The Connection Machine Scientific Software Library (CMSSL) is created for languages
with an array syntax and for data parallel architectures. The CMSSL is designed to handle
concurrent application of a function to disjoint segments of arrays, and concurrent
execution of each application. Concurrent application of the same function to segments
of arrays implies computation on multiple instances, a very important feature for library
;’ routines on scalable architectures. The multiple-instance feature provides concurrency
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control for the library independent of the control structures in the language to which it
is interfaced. The multiple-instance paradigm enhances portability and is a new feature
for scalable architectures.

In the CMSSL, efficient use of the Connection Machine system architecture is
accomplished through a careful choice of data layout, efficient implementation of
interprocessor data motion, and careful management of the local memory hierarchy and
data paths in each processor. The library accepts any data layout that can be specified for
any machine configuration. Internally, library functions may reallocate arrays for
optimum performance, or to establish a common processor configuration for all operands
in a function evaluation. Performance tuning through control of the data allocation is
largely new to data parallel architectures, though some of the issues are analogous to
those occurring in banked memory systems and systems with a cache.

The CMSSL achieves architectural independence with respect to data motion through a
set of communication functions providing a shared memory view of the global address
space. Efficient management of the resources for each processor is achieved through
level 2 and level 3 Basic Linear Algebra Subroutines (BLAS). Blocking schemes are used
for some BLAS functions, and for functions such as the Fast Fourier Transform, for which
high-radix algorithms are advantageous with respect to performance.

In summary, the CMSSL is a library for languages with an array syntax and addresses ' " g
many new issues related to concurrency control, data allocation and data motion in

distributed data structures, language independence, and scalability. It is our hope that the

CMSSL will serve the users of distributed-memory architectures well, and that it will

evolve to include a broad set of basic functions frequently used in scientific and

engineering applications, as well as higher-level functions for ordinary and partial

differential equations, optimization, and signal processing.

Director of Computational Sciences, Thinking Machines Corporation

Gordon MacKay Professor of the Practice of Computer Science, Harvard University
Cambridge, Massachusetts

December 1992
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About This Manual

Objectives

This manual describes the CM Fortran programming interface to the Connection
Machine Scientific Software Library (CMSSL).

This manual describes CMSSL software for the Connection Machine
supercomputer, model CM-5. (Note that throughout this book, statements made
about the CM-200 also apply to the CM-2, unless otherwise noted.)

Intended Audience

Anyone writing CM Fortran programs that use the CMSSL software should read
this document.

Organization

This manual is divided into two volumes with fourteen chapters:
Volume I

Chapter 1 Introduction to the CMSSL for CM Fortran
Describes the contents of the CMSSL. Discusses the data types
supported and explains how to perform CMSSL operations on
multiple independent data sets concurrently.

Chapter 2 Using the CMSSL CM Fortran Interface
Explains how to include CMSSL routine definitions in CM
Fortran code, and how to compile, link, and execute CM Fortran
programs that call CMSSL routines.
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Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Dense Matrix Operations

Describes the inner product, 2-norm, outer product, matrix
vector multiplication, vector matrix multiplication, matrix
multiplication, and infinity norm routines. Also describes the
routine that performs matrix multiplication routine with external
storage.

Sparse Matrix Operations

Describes the routines that perform arbitrary elementwise sparse
matrix operations, arbitrary block sparse matrix operations, and
grid sparse matrix operations.

Linear Solvers for Dense Systems

Describes the in-core linear solvers: Gaussian elimination (LU
decomposition) routines, routines that solve linear systems
using Householder transformations (the QR routines), matrix
inversion, the Gauss-Jordan system solver. Also describes the
external (out-of-core) Gaussian elimination and QR factorization
routines.

Linear Solvers for Banded Systems

Describes the banded system factorization and solver routines,
which solve tridiagonal, block tridiagonal, pentadiagonal, and
block pentadiagonal systems.

Iterative Solvers
Describes routines that solve linear systems using Krylov space
iterative methods.

Eigensystem Analysis

Describes routines that perform eigensystem analysis of dense
real symmetric tridiagonal systems, dense Hermitian systems,
dense real symmetric systems, dense real systems, and sparse
systems. Included are routines that use the Jacobi method, a
k-step Lanczos method, and a k-step Arnoldi method. Also
included are routines that reduce Hermitian matrices to real
symmetric tridiagonal form (and perform the corresponding
basis transformation).
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Volume II

Chapter 9 Fast Fourier Transforms
Describes the simple and detailed complex-to-complex FFT
routines; the real-to-complex and complex-to-real FFT routines;
and array conversion utilities for the real-to-complex and
complex-to-real FFTs.

Chapter 10 Ordinary Differential Equations

Describes routines that integrate ordinary differential equations
(ODEs) explicitly using a fifth-order Runge-Kutta-Fehlberg
formula.

Chapter 11 Linear Programming
Describes a routine that solves multi-dimensional minimization
problems using the simplex linear programming method.

Chapter 12 Random Number Generators
Describes the Fast and VP random number generators.

Chapter 13 Statistical Analysis
Describes the histogram and range histogram routines.

Chapter 14 Communication Primitives

Describes the polyshift operation; the all-to-all rotation,
broadcast, and reduction routines; a matrix transpose routine;
the sparse gather and scatter, sparse vector gather and scatter,
and block gather and scatter utilities; partitioning of an
unstructured mesh and reordering of pointers; the partitioned
gather and scatter utilities; the communication compiler; the
vector move (extract and deposit) routines; routines that
compute block cyclic permutations and permute an array along
an axis; and send-to-NEWS and NEWS-to-send reordering.

Revision Information

This is the first edition of this manual.
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Notation Conventions

The table below displays the notation conventions used in this manual.

Convention

Meaning

bold typewriter

boldface sans serif

italics

bold italics
typewriter

% bold typewriter
typewriter

UNIX and CM System Software commands, command options,
and file names.

CM Fortran language elements, such as function and subroutine
names and constants, when they appear embedded in text or in
syntax lines.

Parameter names, when they appear embedded in text or syntax
lines.

CM arrays, when they appear embedded in text or syntax lines.
Code examples and code fragments.

In interactive examples, user input is shown in bold
typewriter and system output is shown in
regular typewriter font.

Standard Abbreviations for
Matrix Operations and Matrix Types

tl‘he following standard abbreviations are used in the CMSSL CM Fortran
interfaces to identify matrix types. Further abbreviations will be introduced as
more matrix types are supported.

xviii
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¢ o

CMSSL Matrix Type Abbreviations
dense general gen
dense symmetric sym
arbitrary elementwise sparse sparse
arbitrary block sparse block_sparse
grid sparse grid_sparse
tridiagonal gen_tridiag
pentadiagonal gen_pentadiag
block tridiagonal block_tridiag
block pentadiagonal block_pentadiag

The following standard abbreviations are used in the CMSSL CM Fortran interfaces to

“identify matrix operations:

CMSSL Matrix Operation Abbreviations

) factorization

’ inversion
multiplication
solver
polyshift

factor
invert
muit

solve
pshift

Version 3.1, June 1993
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Customer Support

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

‘When reporting an error, please provide as much information as possible to help us
identify and correct the problem. A code example that failed to execute, a session
transcript, the record of a backtrace, or other such information can greatly reduce the time
it takes Thinking Machines to respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail:

Internet
Electronic Mail:

uucp
Electronic Mail:

Telephone:

Thinking Machines Corporation
Customer Support

245 First Street

Cambridge, Massachusetts 02142-1264

customer-support@think.com

ames ! think!customer-support

(617) 234-4000



Chapter 1

Introduction to the CMSSL
for CM Fortran

This chapter contains general information about the CM Fortran interface to the
Connection Machine Scientific Software Library (CMSSL). The following topics
are included:

® about the CMSSL

= contents of the CMSSL for CM Fortran

= data types supported

® notes on terminology

= support for multiple instances

® numerical stability for the linear algebra routines
® numerical complexity

® CM Fortran performance enhancements with CMSSL

1.1 About the CMSSL

The CMSSL is a rapidly growing set of numerical routines that support computa-
tional applications while exploiting the massive parallelism of the Connection
Machine system. The CMSSL provides data parallel implementations of familiar
numerical routines, offering new solutions for performance optimization, algo-
rithm choice, and application design. The library can be linked with code written
in CM Fortran.

Version 3.1, June 1993
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1.2

1.2.1

CMSSL for CM Fortran (CM-5 Edition)

The CMSSL includes dense and sparse matrix operations; routines for solving
dense, banded, and sparse linear systems; eigensystem analysis routines; fast
Fourier transforms; routines for solving ordinary differential equations; a routine
that solves minimization problems using the simplex linear programming
method; random number generators; and histogramming routines. The library
also provides a set of communication functions that offer a strong base for the
development of computational tools. These functions support computations on
problems represented by both structured and unstructured grids. Many CMSSL
routines have been implemented to allow parallel computation on either multiple
independent objects or a single large object. Over time, the CMSSL will continue
to grow into a complete set of standard scientific subroutines.

Contents of the CMSSL for CM Fortran

The CM Fortran interface to the CMSSL consists of a set of library routines and
a safety mechanism.

Library Routines

Listed below are the operations included in the CMSSL for CM Fortran on the
CM-5.

=  Dense Matrix Operations

s Inner Product

The multiple-instance inner product routines compute one or more
instances of an inner product of two vectors. Each single-instance
inner product routine computes the global inner product over all
axes of two source CM arrays. The inner product either overwrites
the destination, is added to the destination, or is added to a second
variable. For complex data, routines that take the conjugate of the
first operand are provided.

» 2-Norm

The multiple-instance 2-norm routine computes one or more in-
stances of the 2-norm of a vector. The single-instance 2-norm
routine computes the global 2-norm of a CM array.

Version 3.1, June 1993
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Quter Product

The outer product routines compute one or more instances of an
outer product of two vectors. The result either overwrites the des-
tination CM array, is added to the destination CM array, or is added
to a second CM array. For complex data, routines that take the con-
jugate of the second operand vector are provided.

Matrix Vector Multiplication

The matrix vector multiplication routines compute one or more ma-
trix vector products. The result either overwrites the destination CM
array, is added to the destination CM array, or is added to a second
CM array. For complex data, routines that take the conjugate of the
matrix are provided.

Vector Matrix Multiplication

The vector matrix multiplication routines compute one or more vec-
tor matrix products. The result either overwrites the destination CM
array, is added to the destination CM array, or is added to a second
CM array. For complex data, routines that take the conjugate of the
matrix are provided.

Infinity Norm

Computes the infinity norm(s) of one or more matrices.

Matrix Multiplication

The matrix multiplication routines compute one or more matrix
products. The result either overwrites the destination CM array, is
added to the destination CM array, or is added to a second CM
array. Routines that take the transpose of either or both operand
matrices (or the conjugate of either matrix, for complex data) are
provided.

Matrix Multiplication with External Storage

This routine performs the operation Y = Y + AX where ¥, 4, and X
are matrices and A is too large to fit into core memory.
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= Sparse Matrix Operations

= Arbitrary Elementwise Sparse Matrix Operations

These routines compute the product of an arbitrary sparse matrix
with a vector or dense matrix. The user application must store the
non-zero elements of the sparse matrix in a packed vector. An asso-
ciated setup routine provides options that may improve
performance.

» Arbitrary Block Sparse Matrix Operations

These routines compute the product of a block sparse matrix with
a vector or a dense matrix. Operand elements are gathered from the
source vector or matrix, and product elements are scattered to the
product vector or matrix, using pointers provided by the applica-
tion. An associated setup routine provides options that may improve
performance.

» Grid Sparse Matrix Operations

These routines perform matrix vector, vector matrix, and matrix
matrix multiplication in which the operand arrays are distributed
across the points of a regular structured grid. These routines support
multiple instances and block matrices.

= General Linear System Solvers (In-Core)
» Gaussian Elimination Routines

» LU factorization routine

This routine uses Gaussian elimination (with or without
partial pivoting) to factor one or more instances of an
m X n matrix A into a lower triangular matrix L and an
upper triangular matrix U, A=LU.

e LU solver routines

These routines use the triangular factors L and U pro-
duced by the LU factorization routines to produce
solutions to the systems LUX=B or (LU)TX=B. B may rep-
resent one or more right-hand sides for each instance of
the systems of equations.

4 Version 3.1, June 1993
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» Triangular system solvers
(“LU factor application routines”)

These routines use the factors produced by the LU factor-
ization routines to solve triangular systems of equations.
Included are routines for solving one or more instances of
triangular systems of equations of the form LX=B,
LTX=B, UX=B, and UTX=B. B may represent one or more
right-hand sides for each instance of the systems of equa-
tions.

e LU utility routines

The CMSSL also provides a set of utility routines
associated with the LU factorization routine. For exam-

ple, there are routines that explicitly compute L and U

from the representation used internally in the factoriza-

tion routine; save and restore internal LU information to

or from a file; and estimate the infinity norm of each

matrix A-1.

» Routines for Solving Linear Systems Using Householder
Transformations

* QR factorization routine

This routine uses Householder transformations (with or
without column pivoting) to factor one or more instances
of an m X n matrix A, m > n, into a trapezoidal matrix Q
and an upper triangular matrix R, A=QR. (When you
specify pivoting, each matrix A is factored into three ma-
trices: A = QRP-!, where P is the permutation matrix that
corresponds to the pivoting process.)

* QR solver routines

These routines use the Q and R factors produced by the
QR factorization routines to solve one or more instances
of the systems of equations QRX=B or (QR)TX=B. (With
pivoting, these equations become QRP-1X = B and
(QRP-1)TX=B.) B may represent one or more right-hand
sides for each instance of the systems of equations.

Version 3.1, June 1993 5
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o Triangular system solvers
( “QR factor application routines”)

These routines use the factors produced by the QR factor-
ization routine to solve triangular systems of equations
(trapezoidal systems for Q). Included are routines for
solving one or more instances of triangular systems of
equations of the form RX=B and RTX=B, and trapezoidal
systems of the form QX=B or QTX=B. B may represent
one or more right-hand sides for each instance of the sys-
tems of equations.

® QR utility routines

The CMSSL also provides a set of utility routines
associated with the QR factorization routine. For exam-
ple, there are routines that explicitly compute R from the
representation used internally in the factorization routine;
extract and deposit the diagonal of R; save and restore
internal QR information to or from a file; apply the pivot
permutation matrix to a supplied matrix or vector; and
estimate the infinity norm.

1Y

» Matrix Inversion

This routine inverts a square matrix A using the Gauss-Jordan rou-
tine.

» Gauss-Jordan System Solver

This routine solves (with partial or total pivoting) a system of equa-
tions of the form AX=B using a version of Gauss-Jordan
elimination. B represents one or more right-hand sides.

=  General Linear System Solvers (External)
= Gaussian Elimination with External Storage

» External LU factorization routine

This routine uses block Gaussian elimination with partial
pivoting to reduce an n X n matrix A to triangular form,
where A is too large to fit into core memory.

Version 3.1, June 1993
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o External LU solver routine

Given the factors computed by the external LU factoriza-
tion routine, this routine solves AX = B for an arbitrary
number of right-hand sides.

* QR Factorization and Least Squares Solution with External Storage

o External QR factorization routine

This routine uses block Householder reflections to per-
form the factorization A = QR, where the matrix A is
m X n (with m > n) and is too large to fit into core
memory.

s External QR solver routine

Given the factors computed by the external QR factoriza-
tion routine, this routine solves AX = B for an arbitrary
number of right-hand sides.

* Banded Linear System Seolvers

Version 3.1, June 1993

» Banded System Factorization and Solver Routines ( “Unified”)

These routines factor and solve tridiagonal, block tridiagonal, pen-
tadiagonal, and block pentadiagonal systems. One routine performs
the factorization. A second routine uses the resulting factors to
solve one or more instances of systems of equations of the form
LUX = B, where L and U are lower and upper (respectively)
bidiagonal or block bidiagonal, or lower and upper (respectively)
tridiagonal or block tridiagonal matrices, or permutations thereof.
B represents one or more right-hand sides for each system of equa-
tions. You can choose from several algorithms: pipelined Gaussian
elimination, pipelined Gaussian elimination with pairwise pivoting,
substructuring with cyclic reduction, substructuring with balanced
cyclic reduction, substructuring with pipelined Gaussian elimina-
tion, or substructuring with transpose.

Banded System Factorization and Solver Routines

These routines perform the same operations as the banded solvers
described above, and are included in the library primarily for com-
patibility with the CM-200. For each type of system, the library
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provides separate factorization and solver routines as well as one
routine that both factors and solves.

= [Iterative Solvers

Krylov-Based Iterative Solvers

Given a matrix A, a right-hand-side vector b, and a preconditioner
M = M1*M,, such that A~ = M;"1AM,"!, these routines solve the
system Ax = b using Krylov space iterative methods. Any matrix
operations and preconditioning steps are provided by the user using
a reverse communication interface.

= Eigensystem Analysis of Real Symmetric Tridiagonal Systems

s Reduction to Tridiagonal Form

and Corresponding Basis Transformation

These routines reduce one or more real symmetric or complex Her-
mitian matrices to real symmetric tridiagonal form using
Householder transformations. After this reduction occurs, for each
instance, you can transform the coordinates of an arbitrary set of
vectors from the basis of the original Hermitian matrix to that of the
tridiagonal matrix, or vice versa.

Eigenvalues of Real Symmetric Tridiagonal Matrices

This routine computes the eigenvalues of one or more real symmet-
ric tridiagonal matrices using a parallel bisection algorithm.

Eigenvectors of Real Symmetric Tridiagonal Matrices

This routine computes the eigenvectors corresponding to a given set
of eigenvalues for one or more real symmetric tridiagonal matrices,
using an inverse iteration algorithm.

* Eigensystem Analysis of Dense Hermitian Systems

= Eigensystem Analysis of Dense Hermitian Matrices

This routine computes the eigenvalues and eigenvectors of one or
more real symmetric or complex Hermitian matrices.

Version 3.1, June 1993
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* Eigensystem Analysis of Dense Real Symmetric Systems

Generalized Eigensystem Analysis of Real Symmetric Matrices

Given a CM array containing one or more real symmetric matrices
A, and a CM array containing corresponding positive definite
matrices B, this routine solves AQ = BQA, computing the
eigenvalues A and, if desired, the eigenvectors for each instance.

Eigensystem Analysis of Real Symmetric Matrices
Using Jacobi Rotations

This routine computes the eigenvalues and eigenvectors of one or
more real symmetric matrices using Jacobi rotations.

Selected Eigenvalue and Eigenvector Analysis Using a k-Step
Lanczos Method

This routine finds selected solutions {A, x} to the real standard or
generalized eigenvalue problem Lx = ABx. B can be positive semi-
definite and is the identity for the standard eigenproblem. The
operator L must be real and symmetric with respect to B; that is, BL
= L-1B. The algorithm used is a k-step Lanczos algorithm with im-
plicit restart.

= FEigensystem Analysis of Dense Real Systems

Selected Eigenvalue and Eigenvector Analysis Using a k-Step
Arnoldi Method

This routine finds selected solutions {A, x} to the real standard or
generalized eigenvalue problem Lx = ABx. B is symmetric and can
be positive semi-definite; it is the identity for the standard eigen-
problem. The algorithm used is a k-step Arnoldi algorithm with
implicit restart.

= FEigensystem Analysis of Sparse Systems

Version 3.1, June 1993

The Lanczos and Amoldi routines described above also apply to
sparse systems.
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= Fast Fourier Transforms (FFTS)

» Simple Complex-to-Complex FFT

Performs a complex-to-complex Fast Fourier Transform in the
same direction along all axes of a data set.

s Detailed Complex-to-Complex FFT

Allows separate specification of the transform direction, scaling
factor, and addressing mode along each data axis in a complex-to-
complex FFT. Can improve performance over the Simple FFT in
some cases. Supports multiple instances.

» Real-to-Complex and Complex-to-Real FFTs

The real-to-complex FFT computes the Fourier transform of real
data; the complex-to-real FFT transforms conjugate symmetric se-
quences.

= Array Conversion Utilities

These utilities convert real arrays into complex arrays suitable for 3
input to the real-to-complex FFT, and convert complex arrays

(supplied in the format produced by the complex-to-real FFT) to

real arrays.

® Ordinary Differential Equations

» Explicit Integration of Ordinary Differential Equations
Using a Runge-Kutta Method

The initial value problem for a system of N coupled first-order ordi-
nary differential equations (ODEs), dy;(x)/dx = fi(x, ¥1, . . ., JN) i=1,
..., N consists of finding the values y;(x;) at some value x; of the
independent variable x, given the values y;(xp) of the dependent
variables at xp. This routine solves the initial value problem by
integrating explicitly the set of equations above using a fifth-order
Runge-Kutta-Fehlberg formula. Control of the step size during
integration is automatic. The evaluation of the right-hand side and
possibly the scaling array for accuracy control are provided by the
user through a reverse communication interface.

10 Version 3.1, June 1993
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® Linear Programming

Dense Simplex

This routine solves multidimensional minimization problems using
the simplex linear programming method. The goal is to find the
minimum of a linear function of multiple independent variables. In
the standard formulation, the problem is to minimize the inner prod-
uct cTx subject to the conditions Mx = b, 0 < x < u, where M is an
m X n matrix, ¢ is a coefficient vector, and cTx is referred to as the
cost. The upper bound vector ¥ may be infinity in one or more com-
ponents.

= Random Number Generators (RNGs)

Fast RNG

This lagged-Fibonacci RNG is faster than the standard RNG in-
cluded in CM Fortran. It generates either real or integer
pseudo-random numbers, allows user-controlled reinitialization
and checkpointing, and allows users to save and restore the RNG
state table.

VP RNG

This lagged-Fibonacci RNG produces identical streams on CM
partitions of different sizes. It generates either real or integer
pseudo-random numbers, allows user-controlled reinitialization
and checkpointing, and allows users to save and restore the RNG
state table.

= Statistical Analysis

Version 3.1, June 1993

Full Histogram

The full histogram records the distribution of all values within one
or more source fields. Successive calls can provide an accumulation
of totals.

Range Histogram

The range histogram records the distribution of values within speci-
fied ranges of values within one or more source fields. Successive
calls can provide an accumulation of totals.

11
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=  Communication Primitives

Polyshift

This routine performs multidirectional and/or multidimensional
array shifts in an array geometry.

All-to-All Rotation (previously called “All-to-All Broadcast”)

Given a real or complex array and a designated axis, this routine
performs an in-place, stepwise rotation of every array value on the
axis to every location along the axis.

All-to-All Broadcast

Given source and destination CM arrays of the same type, with
rank(destination array) = rank(source array) + 1, the all-to-all
broadcast routine copies each instance of a source vector to the des-
tination array and replicates it along a selected axis (the “broadcast
axis™) of the destination array.

All-to-All Reduction

Given source and destination CM arrays with rank(source array) =
rank(destination arra);) + 1, the all-to-all reduction routine com-
bines sets of vectors within the source array and places each result
in a corresponding vector of the destination array.

Matrix Transpose

Given a CM array of any type and two designated axes, this routine
exchanges the two axes and returns the result in a second CM array.

Sparse Gather Utility

These routines gather elements of a vector into an array using point-
ers supplied by the application. Pre-processing is performed by an
associated setup routine.

Sparse Scatter Utility

These routines scatter elements of an array to a vector using point-
ers supplied by the application. Pre-processing is performed by an
associated setup routine.

Version 3.1, June 1993
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« Sparse Vector Gather Utility

These routines perform the same operation as the sparse gather rou-
tines, except that the sparse vector gather operates on vectors rather
than individual data elements.

» Sparse Vector Scatter Utility

These routines perform the same operation as the sparse scatter rou-
tines, except that the sparse vector-scatter operates on vectors rather
than individual data elements.

s Block Gather and Scatter Utilities

These routines move a block of data from a source CM array into
a destination CM array. The arrays must have the same rank (> 2),
type (integer, real, or complex), precision, and layout, with at least
one serial axis and at least one parallel axis. The gather or scatter
operation occurs along a single, specified serial axis. In the simplest
case, a block of data elements is moved from a two-dimensional

source array (with one serial dimension and one paralle]l dimension)

’ to a similar destination array. You can add instances by extending
the parallel axis or by adding more axes (which may be serial or
parallel).

= Partitioning of an Unstructured Mesh and Reordering of Pointers

These routines allow you to reorder an array of pointers derived
from a mesh so that the communication required by subsequent
partitioned gather and scatter operations is reduced. Four routines
are provided:

¢ Given an element nodes array that describes an unstruc-
tured mesh, one routine produces the corresponding dual
connectivity array.

* Given a dual connectivity array, a second routine returns
a permutation that reorders the mesh elements to form
discrete partitions.

* Given a pointers array and a permutation, a third routine
reorders the pointers array along its last axis using the
permutation.

Version 3.1, June 1993 13
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¢ Given a pointers array, a fourth routine changes the
pointer values for improved locality and returns the
renumbering mapping.

If you derive a pointers array from a mesh, reorder it using the per-
mutation returned by the partitioning routine, and then supply these
reordered pointers to the setup routine for the partitioned gather or
scatter operation, the setup routine takes advantage of data locality;
the communication required by the gather or scatter is reduced.

Partitioned Gather Utility

These routines perform the same operations as the sparse gather and
sparse vector gather routines. If you supply a pointers array that is
reordered along its last axis to achieve data locality, the partitioned
gather takes advantage of this locality, reducing communication
time.

Partitioned Scatter Utility

These routines perform the same operations as the sparse scatter
and sparse vector scatter routines. If you supply a pointers array that
is reordered along its last axis to achieve data locality, the parti-
tioned gather takes advantage of this locality, reducing
communication time.

Communication Compiler

A set of routines that compute and use message delivery optimiza-
tions for basic data motion and combining operations (get, send,
send with overwrite, and send with combining). The communica-
tion compiler allows you to compute an optimization (or trace) just
once, and then use the trace many times in subsequent data motion
and combining operations. This feature can yield significant time
savings in applications that perform the same communication oper-
ation repeatedly. The communication compiler offers a variety of
methods for computing a trace.

Vector Move (Extract and Deposit)

This routine moves a vector from a source array to a destination
array of the same rank, data type, and processing element layout.
An associated utility routine returns processing element layout and
subgrid shape information for any CM array.

Version 3.1, June 1993
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Computation of Block Cyclic Permutations

This routine computes the permutations required to transform one
or more matrices from normal (elementwise consecutive) order to
block cyclic order, and vice versa.

Permutation along an Axis

This routine permutes the rows or columns of one or more matrices,
using a permutation that is supplied in an array.

Send-to-NEWS and NEWS-to-Send Reordering

On the CM-200, these routines allow you to change the ordering of
specified axes of a CM array from send to NEWS ordering or vice-
versa. On the CM-5, these routines have no effect because send and
NEWS ordering are the same. They are provided only for compati-
bility with the CM-200. (Refer to the CM Fortran documentation set
for information about send and NEWS ordering.)

Table 1 lists the CMSSL routines for CM Fortran on the CM-5, along with the
chapters that describe them.

Version 3.1, June 1993
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Table 1. CMSSL Routines for CM Fortran.

Operation

Chapter Routines

Inner product

2-norm

Outer product

Matrix vector
multiplication

gen_inner_product
gen_inner_product_noadd
gen_inner_product_addto
gen_inner_product_c1
gen_inner_product_c1_noadd
gen_inner_product_c1_addto
gbl_gen_inner_product
gbl_gen_inner_product_noadd
gbl_gen_inner_product_addto
gbl_gen_inner_product_c1
gbl_gen_inner_product_c1_noadd
gbl_gen_inner_product_c1_addto

gen_2_norm
gbl_gen_2_norm

gen_outer_product
gen_outer_product_noadd
gen_outer_product_addto
gen_outer_product_c2
gen_outer_product_c2_ noadd
gen_outer_product_c2_addto

gen_matrix_vector_mult
gen_matrix_vector_mult_noadd
gen_matrix_vector_muit_addto
gen_matrix_vector_mult_c1
gen_matrix_vector_muit_c1 _ndadd
gen_matrix_vector_mult_c1_addto

CMSSL for CM Fortran (CM-5 Edition)
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Table 1 (Continued)

Operation Chapter Routines

Vector matrix 3 gen_vector_matrix_muit

multiplication gen_vector_matrix_mult_noadd
gen_vector_matrix_mult_addto
gen_vector_matrix_mult_c2
gen_vector_matrix_mult_c2_noadd
gen_vector_matrix_mult_c2_addto

Infinity norm 3 gen_infinity_norm

Matrix multiplication 3

Matrix multiplication 3
with external storage

gen_matrix_muit
gen_matrix_mult_noadd
gen_matrix_mult_addto
gen_matrix_mult_t1
gen_matrix_mult_t1_noadd
gen_matrix_mult_t1_addto
gen_matrix_mult_hi
gen_matrix_mult_h1_noadd
gen_matrix_muit_h1_addto
gen_matrix_muit_t2
gen_matrix_mult_t2_noadd
gen_matrix_mult_t2_addto
gen_matrix_mult_h2
gen_matrix_muit_h2_noadd
gen_matrix_mult_h2_addto
gen_matrix_mult_t1_t2
gen_matrix_mult_t1_t2_noadd
gen_matrix_mult_t1_t2_addto

gen_matrix_mult_ext
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Table 1 (Continued)

Operation Chapter Routines

Arbitrary elementwise 4
sparse matrix
operations

Arbitrary block 4
sparse matrix
operations

Grid sparse matrix 4
operations

elimination

sparse_matvec_setup
sparse_matvec_mult
sparse_mat_gen_mat_mult
deallocate_sparse_matvec_setup
sparse_vecmat_setup
sparse_vecmat_mult
gen_mat_sparse_mat_mult
deallocate_sparse_vecmat_setup

block_sparse_setup
block_sparse_matrix_vector_muit
vector_block_sparse_matrix_mult
block_sparse_mat_gen_mat_mult
gen_mat_block_sparse_mat_muilt
deallocate_block_sparse_setup

grid_sparse_setup
grid_sparse_matrix_vector_muit
vector_grid_sparse_matrix_muilt
grid_sparse_mat_gen_mat_muit
gen_mat_grid_sparse_mat_mult
deallocate_grid_sparse_setup

gen_lu_factor
save_gen_lu
restore_gen_lu
gen_lu_solve
gen_lu_solve_tra
gen_lu_apply_|_inv
gen_lu_apply_u_inv
gen_lu_apply_L_inv_tra
gen_lu_apply_u_inv_tra
gen_lu_get_|
gen_lu_get_u
gen_lu_infinity_norm_inv
deallocate_gen_lu
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Table 1 (Continued)

Operation Chapter Routines

Linear system solvers 5
using Householder
transformations

Matrix inversion 5

Gauss-Jordan S
system solver

Gaussian 5
elimination

with external storage

QR factorization and 5

least squares solution
with external storage

gen_gqr_factor
save_gen_qr
restore_gen_gqr
gen_qr_solve
gen_qr_soive_tra
gen_qr_apply_q
gen_qr_apply_q_tra
gen_qr_apply_r_inv
gen_qr_apply_r_inv_tra
gen_qr_get r
gen_qr_apply_p
gen_qr_apply_p_inv
gen_qr_zero_rows
gen_qgr_extract_diag
gen_qr_deposit_diag
gen_qr_infinity_norm_inv
gen_qr_r_infinity_norm_inv
deallocate_gen_qr

gen_gj_invert

gen_gj_solve

gen_lu_factor_ext
gen_lu_solve_ext

gen_qr_factor_ext
gen_gr_solve_ext
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¥

Table 1 (Continued)

Operation : Chapter Routines

Banded system 6 gen_banded_factor
factorization and gen_banded_solve

solver routines deallocate_banded
(unified)

Banded system 6 gen_tridiag_factor
factorization and gen_tridiag_solve

solver routines gen_tridiag_solve_factored

gen_pentadiag_factor
gen_pentadiag_solve
gen_pentadiag_solve_factored
block_tridiag_factor
block_tridiag_solve
block_tridiag_solve_factored
block_pentadiag_factor )
block_pentadiag_solve g ‘
block_pentadiag_solve_factored o
deallocate_banded_solve

Krylov-based 7 gen_iter_solve_setup
iterative solvers gen_iter_solve
deallocate_lter_solve

Reduction to 8 sym_tred

tridiagonal form and sym_to_tridiag
corresponding basis tridiag_to_sym
transformation deallocate_sym_tred
Eigenvalues of real 8 sym_tridiag_eigenvalues
symmetric tridiagonal

matrices

Eigenvectors of real 8 sym_tridiag_eigenvectors
symmetric tridiagonal
matrices

—
ol
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Table 1 (Continued)

Operation Chapter Routines

Eigensystem analysis 8
of dense Hermitian
matrices

Generalized eigensystem 8
analysis of real symmetric
matrices

Eigensystem analysis 8

using Jacobi rotations

Eigensystem analysis 8
using a k-step Lanczos
method

Eigensystem analysis 8
using a k-step Arnoldi
method

Complex-to-complex 9
FFT

Real-to-complex and 9
complex-to-real FFT

Array conversion 9
utilities for the FFT

Explicit integration of 10
ODEs (Runge-Kutta)

Dense simplex 11

sym_tred_eigensystem

sym_tred_gen_elgensystem

sym_jacobi_eigensystem

sym_lanczos_setup
sym_lanczos
deallocate_sym_lanczos_setup

gen_arnoldi_setup
gen_arnoldi
deallocate_gen_arnoldi_setup

fft_setup

fft

fit_detalled
deallocate_fft_setup

fit_setup
fit_detailed
deallocate_fft_setup

real_from_complex
complex_from_real

ode_rkf_setup
ode_rkf
deallocate_ode_rkf_setup

gen_simplex
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Operation

Chapter Routines

Fast RNG

Full histogram
Range histogram
Polyshift

All-to-all rotation

All-to-all broadcast
All-to-all reduction

Matrix transpose

12

12

13
13
14

14

14
14
14

initialize_fast_rng
fast_rng
save_fast_rng_temps
restore_fast_rng_temps
fast_rng_state_field
fast_rng_residue
reinitialize_fast_rng
deallocate_fast_rng

initialize_vp_rng
vp_mg
save_vp_rng_temps
restore_vp_rng_temps
vp_rng_state_field
vp_rng_residue
reinitialize_vp_rng
deallocate_vp_rng

histogram
histogram_range

pshift_setup
pshift_setup_looped
pshift
deallocate_pshift_setup

all_to_all_setup

all_to_all
deallocate_all_to_all_setup
ali_to_all_broadcast
all_to_all_reduce

gen_matrix_transpose
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Table 1 (Continued)

Operation

Chapter Routines

Sparse gather
Sparse scatter
Sparse vector gather
Sparse vector scatter

= ’ Block gather and
o scatter utilities

Mesh partitioning,
pointer reordering

Partitioned gather

Partitioned scatter

14

14

14

14

14

14

14

14

sparse_utll_gather_setup
sparse_util_gather
deallocate_gather_setup

sparse_utll_scatter_setup

'sparse_util_scatter

deallocate_scatter_setup

sparse_utll_vec_gather_setup
sparse_util_vec_gather
deallocate_vec_gather_setup

sparse_util_vec_scatter_setup
sparse_util_vec_scatter
deallocate_vec_scatter_setup

block_gather
block_scatter

generate_dual
partition_mesh
reorder_pointers
renumber_pointers

part_gather_setup
part_gather
part_vector_gather
deallocate_part_gather_setup

part_scatter_setup
part_scatter
part_vector_scatter
deallocate_part_scatter_setup
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Table 1 (Continued)

Operation Chapter Routines

Communication 14 comm_setup

compiler comm_get
comm_send
comm_send_add
comm_send_and
comm_send_max
comm_send_min
comm_send_or
comm_send_xor
comm_set_option
deallocate_comm_setup

Vector move 14  vector_move

(extract and deposit) vector_move_utils

Computation of block 14  compute_fe_block_cyclic_perms

cyclic permutations

Permutation along 14  permute_cm_matrix_axis_from_fe

an axis

Send-to-NEWS and 14  send_to_news

NEWS-to-send
reordering

news_to_send

1.2.2 Safety Mechanism

The CMSSL safety mechanism offers two basic features: it synchronizes the
CM-5 processing elements and partition manager so that you can pinpoint the
area of code that generated an error, and it performs error checking and reports
errors at several levels of detail. You can use the CMSSL safety mechanism either
by setting an environment variable or by using library calls within a program.
The safety mechanism is described in Chapter 2.
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1.3.1

1.3.2

Chapter 1. Introduction to the CMSSL for CM Fortran

Notes on Terminology

Data Types

Throughout this manual, the terms “real” and “complex” refer to both single-pre-
cision and double-precision data, unless otherwise noted. For example, an array
described as a “complex CM array” can be either single-precision complex or
double-precision complex.

Array Axis Descriptions
In array descriptions throughout this manual, row and column axes are distin-
guished as follows:
= “The axis that counts the rows,” “the row axis,” and row_axis refer to axis
1 in Figure 1.
® “The axis that counts the columns,” “the column axis,” and col_axis refer
to axis 2 in Figure 1.

[ N J ®
o000 ®
[ X J [ ]
row axis = axis 1 * oo o
L e o000 o
This axis counts the rows. e oo °
® [ X ]
[ ] [ X N ]
L o oo
o

column axis = axis 2
This axis counts the columns.

Figure 1. Row and column axes.

1.3.3 Processing Elements and Subgrids

Some sections of this manual contain implementation and performance informa-
tion, and use the term processing element. The CM system component that serves
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as the processing element depends on the CM Fortran execution model. Under
the vector-units model, a processing element is a vector unit. Under the (SPARC)
nodes model, a processing element is a SPARC processing node. The CM Fortran
utility CMF_NUMBER_OF_PROCESSORS returns the number of processing ele-
ments available in the current execution model.

The mapping of array elements to processing elements is performed by the run-
time system, and depends on the number of processing elements available to
execute the program. You can control this mapping using the detailed axis des-
criptors of the CMF$LAYOUT directive, or using the CM Fortran utility CMF_
ALLOCATE_DETAILED_ARRAY.

The elements of an array residing within one processing element are said to be
local to that processing element. The subgrid associated with a processing ele-
ment consists of the array elements that are local to the processing element, as
well as any “garbage elements” (padding) required by the size constraints
involved in mapping array elements to processing elements. The subgrids of an
array are all the same size and are located at the same memory address within
each processing element. The subgrid extent of an axis is the number of array
elements in the subgrid along that axis.

An axis is local if the array elements along the axis reside within one processing
element. An axis is non-local or global if the array elements along the axis span
multiple processing elements.

In most cases, you do not need to understand the implementation of a CMSSL
routine at the level of processing elements in order to use the routine. Implemen-
tation and performance information is provided for users who want to tune and
optimize their code.

Data Types Supported

Table 2 shows the data types supported for each CMSSL operation. Within each
subroutine call, all CM array arguments must match in data type and precision,
unless the argument descriptions indicate otherwise.
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Table 2. Data Types Supported by the CMSSL for CM Fortran.

Data Type

Operation Integer Real4 Real-8 Cmpix-8 Cmplix-16
Inner product X X X X
2-norm X X X X
Outer product X X X X
Matrix vector multiplication X X X X
Vector matrix multiplication X X X X
Infinity norm X X X X
Matrix multiplication X X X X
Matrix multiplication with external storage X X X X
Arbitrary elementwise sparse matrix operations X X X
Arbitrary block sparse matrix operations X X X X
Grid sparse matrix operations X X
Gaussian elimination X X X X
Linear solvers using Householder transformations X X X X
Matrix inversion X X X X
Gauss-Jordan system solver X X X X
Gaussian elimination with external storage X X X X
QR factorization with external storage X X X X
Banded system solvers X X X X
Iterative solvers X X
Reduction to tridiagonal form X X X X
Corresponding basis transformation X X X X
Eigenvalues of real symmetric tridiagonal matrices X X

Eigenvectors of real symmetric tridiagonal matrices X X

Eigensystem analysis of dense Hermitian matrices X X X X
Generalized eigenanalysis of real symmetric matrices X X

Eigensystem analysis using Jacobi rotations X X

Selected eigenvalues/eigenvectors (Lanczos) X X

Selected eigenvalues/eigenvectors (Arnoldi) X X
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Table 2 (Continued)
_DataType

Operation Iinteger Real-4 Real-8 Cmpix-8 Cmpix-16
Simple complex-to-complex FFT X X
Detailed complex-to-complex FFT X X
Real-to-complex FFT X X
Complex-to-real FFT X X
Array conversion utilities X X X X
ODEs (Runge-Kutta method) X X
Dense simplex X X
Fast RNG X X X
VP RNG X X X
Histogram X X X
Histogram range X X X
Polyshift X X X X X
All-to-all rotation X X X X X
All-to-all broadcast X X X X X
All-to-all reduction X X X X X
Matrix transpose X X X X X
Sparse gather utility X X X X X
Sparse scatter utility X X X X X
Sparse vector gather utility X X X X X
Sparse vector scatter utility X X X X X
Block gather and scatter utilities X X X X X
Mesh partitioning, pointer reordering X
Partitioned gather utility X X X X X
Partitioned scatter utility X X X X X
Communication compiler X X X X X
Vector move X X X X X
Computation of block cyclic permutations X X X X X
Permutation along an axis X X X X X
Send-to-NEWS, NEWS-to-send reordering X X X X X
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1.5 Support for Multiple Instances

Many CMSSL routines support multiple instances: that is, they allow you to per-
form multiple independent operations on different data sets concurrently. Table 3

shows which operations currently support multiple instances in CM Fortran.

Table 3. CMSSL Support for Multiple Instances in CM Fortran.

Operation

— Instances
Single Multiple

Inner product

2-norm

Outer product

Matrix vector multiplication

Vector matrix multiplication

Infinity norm

Matrix multiplication

Matrix multiplication with external storage

Arbitrary elementwise sparse matrix operations
Arbitrary block sparse matrix operations
Grid sparse matrix operations

Gaussian elimination

Linear solvers using Householder transformations
Matrix inversion

Gauss-Jordan system solver

Gaussian elimination with external storage

QR factorization with external storage

Banded system solvers

Iterative solvers

X X X X X X xX X X X X X X X X X X

b

X X X X X X X

x
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Table 3 (Continued)
— Instances
Operation Single Muitiple
Reduction to tridiagonal form X X
Corresponding basis transformation X X
Eigenvalues of real symmetric tridiagonal matrices X X
Eigenvectors of real symmetric tridiagonal matrices X X
Eigenanalysis of dense Hermitian matrices X X
Generalized eigenanalysis of real symmetric matrices X X
Eigenanalysis using Jacobi rotations X X
Selected eigenvalues/eigenvectors (Lanczos) X
Selected eigenvalues/eigenvectors (Arnoldi) X
Simple complex-to-complex FFT X
Detailed complex-to-complex FFT X X
Real-to-complex FFT X X
Complex-to-real FFT X X
Array conversion utilities X X
ODEs (Runge-Kutta method) X
Dense simplex X
Fast RNG X
VP RNG X
Histogram X
Histogram range X
Polyshift X X
All-to-all rotation X X
All-to-all broadcast X X
All-to-all reduction X X
Matrix transpose X X

30
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Table 3 (Continued)

— Instances
Operation Single Multiple
Sparse gather utility X
Sparse scatter utility X
Sparse vector gather utility X
Sparse vector scatter utility X
Block gather and scatter utilities X X
Mesh partitioning, pointer reordering X
Partitioned gather utility X
Partitioned scatter utility X
Communication compiler X X
Vector move X
Computation of block cyclic permutations X X
Permutation along an axis X X
Send-to-NEWS, NEWS-to-send reordering X X

1.5.1 Defining Multiple Independent Data Sets

To perform a CMSSL operation on multiple independent data sets concurrently,
you must embed the multiple independent instances of each operand or result
argument in a CM array. The axes of the array fall into two mutually exclusive

groups:

® The data axes define the geometry of the individual instances of the oper-
and or result.

= The instance axes label the multiple instances.

For example, Figure 2 illustrates a matrix vector multiplication operation in
which four independent products are computed simultaneously. The four destina-
tion vectors are embedded in a two-dimensional CM array with one data axis (the
vertical direction in the figure) and one instance axis; the four source vectors are
similarly embedded in another CM array. The source matrices are embedded in
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a three-dimensional CM array. The instances within each array are labeled 1
through 4.

AN
instance axis

AN

destination -  destination source
+ +
vector vector ( source matrix  x vector)

Figure 2. A multiple-instance matrix vector multiplication problem.

The structure defined by the data axes is the object of interest — the logical unit
on which the routine operates. This structure is sometimes referred to as a cell.
The instance axes define the geometry of the larger structure, or frame, in which
the cells are embedded. The three-dimensional array shown in Figure 2 is a
frame containing four two-dimensional cells.

The product of the extents of the instance axes is the total number of instances.
The product of the extents of the data axes is the size of the cell.

1.5.2 Notation Used for CM Arrays and Embedded Matrices

32

Throughout this book, CM array names are printed in bold italics. If a CM array
contains multiple instances of a matrix, the same name is often used for the CM
array and each matrix instance it contains. The name is printed in bold italics to
denote the CM array, and in italics to denote the embedded matrix. For example,
the text might refer to “a CM array A containing one or more matrices A.”
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1.5.3 Rules for Data Axes and Instance Axes

1.54

When you organize your data to form cells and frames for a multiple-instance
operation, follow these rules:

All operand and result arrays must have the same number of instance axes.

Counting up through the axes of the arrays, starting with axis 1 and ex-
cluding the data axes, corresponding instance axes must occur in the same
order in each operand or result array.

The corresponding instance axes of each operand or result array must have
identical extents. In some cases (indicated in the man pages for specific
routines), corresponding instance axes must also have identical layout
directives.

The extents of the data axes must be defined so that the operation makes
sense. For example, in matrix multiplication, the data axis extents of the
operand and result matrices must obey the standard rules for axis extents
in matrix multiplication. Specific requirements for data axis extents are
provided in the descriptions of individual routines in later chapters.

Except where explicitly noted, the CMSSL supports all combinations of
layout directives for data axes and instance axes. The layout that results
in best performance depends on the operation. However, in most cases
performance is best when the cells are local to a processing element. To
achieve this state, use the detailed axis descriptors of the CM Fortran
CMFS$LAYOUT directive. Instance axes are typically defined as parallel
axes (:news or :send). Some of the descriptions of individual routines in
this book contain specific information about optimizing array layouts.

Most CMSSL routines impose few or no restrictions on where the instance axes
can occur in an array. This flexibility helps you avoid the transposes you might
have to perform if, for example, instance axes were required to be the last axes
of an array. (Transposes involve communication, and therefore exact a perfor-
mance price.)

Specifying Single-instance vs. Multiple-Instance Operations

CMSSL routines that support multiple instances have the same calling sequence
for single-instance and multiple-instance operations. The methods you must use
to specify single-instance and multiple-instance operations depend on the type of
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routine you are calling. Specific information is provided in the man pages
included in Chapters 3 through 14. Several examples are discussed below.

Example 1. Matrix Vector Multiplication

When you call the matrix vector multiplication routine, gen_matrix_vector_mult,
the dimensionality of the arguments you supply determines whether the routine
performs a single-instance or multiple-instance operation, as follows:

= To perform a single-instance operation, specify each vector argument as
a one-dimensional CM array and each matrix argument as a two-dimen-
sional CM array. (Alternatively, you declare these arguments to have more
dimensions, but all instance axes must have extent 1.)

® To perform a multiple-instance operation, embed the multiple instances of
each vector argument in a CM array of rank greater than 1, and embed the
multiple instances of each matrix argument in a CM array of rank greater
than 2.

This routine requires you to specify which axes you are using as data axes for
each matrix or vector argument. Chapter 3 provides details.

Example 2: Solving Linear Systems Using Householder
Transformations (In-Core QR Factorization and Solver Routines)

Figure 3 through Figure 5 show how a multiple-instance problem is set up for the
in-core routines that solve linear systems using Householder transformations (the
“@R” routines). The three-dimensional array A in Figure 3 contains four matrices
to be factored (four instances of the matrix A). Each matrix A has dimensions m
X n, and is (optionally) contained in a larger matrix embedded in the array A. The
data axes, which count the rows and columns of the matrices, can be any two
axes of the array A; you need not use the first and second axes for this purpose.
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N
NN
{k

AN
instance axis

Figure 3. The matrices to be factored have size m X n
and may be contained in larger matrices embedded in A.

Figure 4 shows four instances of the linear system AX = B. The right-hand-side
matrices B are embedded in the array B; you must use the same axes to count the
rows and columns of the instances in B as in A. The parameter r represents the
number of columns, or right-hand-side vectors, in each matrix B; thus, each B has

.
‘ ’ sizem Xr.
A
m n =
;—v—l
'__.V_.._J r
n
A X = B

Figure 4. The linear systems AX = B

Upon completion of the solver routine, the first n rows of each matrix B are over-
written with the least squares solution to AX = B, as shown in Figure 5. For more
information about the QR routines, refer to Chapter 5.

Version 3.1, June 1993 35
Copyright © 1993 Thinking Machines Corporation



CMSSL for CM Fortran (CM-5 Edition)

Solutions to L m
AX=B '

36

Figure 5. The matrices embedded in the array B are partially overwritten with

the solutions when the solver routine completes.

Example 3: Fast Fourier Transforms

When you call the Detailed complex-to-complex FFT (CCFFT) routine, you can
supply a multidimensional CM array and specify whether you want to perform
a forward transform, an inverse transform, or no transform along each axis. You
can also specify axes along which no transform is performed but address bits are
reversed. The axes that are transformed or bit-reversed are the data axes, and
define the cell; the axes along which you perform no transformation are the in-
stance axes. ' ’

The Simple CCFFT performs a transform along each axis of the supplied array,
and therefore does not support multiple instances.

In addition to the CCFFT, the CMSSL provides a real-to-complex FFT (RCFFT)
for computing the Fourier transform of real data, and a complex-to-real FFT
(CRFFT) for the transformation of conjugate symmetric complex sequences. The
Fourier Transform of a real or conjugate symmetric sequence can be computed
using half the storage and half the arithmetic of a CCFFT. The RCFFT and CRFFT
support multiple instances in a manner similar to that of the CCFFT.

For detailed information about multidimensional and multiple-instance FFTs, re-
fer to Chapter 9.
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1.6

Example 4: Polyshift

The polyshift routines perform multidirectional and/or multidimensional se-
quences of CSHIFT and/or EOSHIFT operations on a CM array. The axes along
which shifts are performed are the data axes; all other axes are the instance axes.
Chapter 14 provides details.

Example 5: All-to-All Rotation

The all-to-all rotation routines perform a stepwise rotation along a selected axis
of an arbitrary array. Every array element visits every location along the axis.
Each step corresponds to a data permutation along the axis, and is typically fol-
lowed by computations.

In the all-to-all rotation, the axis along which the rotation occurs is the data axis,
and all other axes are instance axes. Each one-dimensional cell undergoes an all-
to-all rotation. Within a multidimensional array, the multiple instances of the
all-to-all rotation have different permutation patterns. For example, if the ele-
ments of a two-dimensional array are rotated along the rows, each row may have
a different permutation path.

For more information about the all-to-all rotation, refer to Chapter 14.

Example 6: Random Number Generators

The random number generators support multiple instances in the sense that they
produce multiple streams of random numbers (one stream per processing ele-
ment or one stream per array element). Chapter 12 provides details.

Numerical Stability for the Linear Algebra Routines

Some of the descriptions of linear algebra routines in later chapters include infor-
mation about numerical stability. In this book, numerical stability is defined in
the standard way: an algorithm is stable if the computed result is the exact solu-
tion of a slightly different problem. For example, if A is the input matrix, the
computed result is the true result corresponding to the matrix A + E, where E is
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small in norm compared with A.* Most of the algorithms used by the CMSSL are
numerically stable in this sense. However, a few are only conditionally stable,
which means that the numerical stability may depend on the condition number
of the problem. For information about the stability of specific routines, refer to
the descriptions of the routines in later chapters.

1.7 Numerical Complexity

The following table lists the numbers of floating-point operations performed by
some of the CMSSL routines.

Table 4. Number of Floating-Point Operations (flops)

Performed by CMSSL Routines
Routine #flops # flops
(real (complex

operands) operands)

Vector length = g, number of instances = I

gen_inner_product 2ql 8qI
gen_inner_product_noadd 2q-1! 8g-2)1
gen_inner_product_addto 2q1 8qI
gen_inner_product_c1 2q1 8ql
gen_inner_product_c1_noadd (2g-1)1 (8g-2)I
gen_inner_product_c1_addto 2q1 8q1

Product of axis extents = Q:

gbl_gen_inner_product 2Q 8Q
gbl_gen_inner_product_noadd 2Q-1 8Q-2
gbl_gen_inner_product_addto 2Q 8Q
gbl_gen_inner_product_c1 2Q 8Q
gbl_gen_inner_product_c1_noadd 20Q-1 8Q-2
gbl_gen_inner_product_c1_addto 2Q 8Q

*

38

For a more formal definition, see Golub, G. H. and C. F. Van Loan, Matrix Computations, 2d ed. (Balti-
more: Johns Hopkins University Press, 1989).
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Table 4 (Continued)
Routine # flops # flops
(real (compiex

operands) operands)

Vector length = ¢, number of instances = I:

gen_2_norm [(2g-1)+81*  (4q-1)+8)I"
Product of axis extents = Q:

gbl_gen_2_norm (Q-1)+8" (4Q-1)+8"

Matrix size = p X g, vector lengths = p and ¢q, number of instances = I:

gen_outer_product 2pql 8pql
gen_outer_product_noadd pal 6pql
gen_outer_product_addto 2pql 8pql
gen_outer_product_c2 2pql 8pql
o gen_outer_product_c2_noadd pal 6pql
¢ ’ gen_outer_product_c2_addto 2pql 8pql

Matrix size = p X g, vector lengths = p and g, number of instances = I

gen_matrix_vector_muit 2pql 8pql
gen_matrix_vector_mult_noadd @2pq-p)I  (8pqg-2p)I
gen_matrix_vector_mult_addto 2pql 8pql
gen_matrix_vector_mult_c1 2pql 8pql
gen_matrix_vector_mult_c1_noadd @pq-p)I  (8pq-2p)!
gen_matrix_vector_muit_c1_addto 2pql 8pql

Matrix size = p X g, vector lengths = p and g, number of instances = I

gen_vector_matrix_mult 2pql 8pql
gen_vector_matrix_mult_noadd 2pq-p)l  (8pg-2p)I
gen_vector_matrix_mult_addto 2pql 8pql
gen_vector_matrix_mult_c2 2pql 8pql
gen_vector_matrix_mult_c2_noadd @2pg-p)I  (8pg-2p)I
gen_vector_matrix_mult_c2_addto 2pql 8pql
*\‘*E " *The additional 8 flops are for the square root operation.
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Table 4 (Continued)
Routine # flops # flops
(real (complex

operands) operands)

Matrix size = m X n, number of instances = I
gen_infinity_norm

Matrix sizes = p X q and g X r, number of instances = I

gen_matrix_mult 2pqrl 8pqrl
gen_matrix_mult_noadd (2pgr-pr)l (8pgr-2pnl
gen_matrix_mult_addto 2pgrl 8pgrl
gen_matrix_mult_ext 2pqr 8pgr

Matrix sizes = g X p and g X r, number of instances = I

gen_matrix_mult_t1
gen_matrix_mult_t1_noadd
gen_matrix_mult_t1_addto
gen_matrix_mult_h1
_gen_matrix_muit_h1_noadd
gen_matrix_mult_h1_addto

2pqrl 8pgrl
@pgr-pnl  (8pqr-2pnl
2pqrl 8pgrl
2pqrl 8pgrl
(2pgr-pnI  (8pgr-2pnl
2pqrl 8pgrl

Matrix sizes = p X q and r X g, number of instances = I

gen_matrix_mult_t2
gen_matrix_mult_t2_noadd
gen_matrix_mult_t2_addto
gen_matrix_mult_h2
gen_matrix_mult_hz,qoadd

2pgrl 8pgrl
@pqr-pnl (8pgr-2pnl
2pgrl 8pgrl
2pgrl 8pgrl
@pgr-pn)I (8pgr-2pr)!

gen_matrix_mult_h2_addto 2pqrl 8pgrl

Matrix sizes = g X p and r X g, number of instances = I

gen_matrix_mult_t1_t2 2pqrl 8pqrl
gen_matrix_mult_t1_t2_noadd (2pgr-pnI (8pqr-2pnl
gen_matrix_mult_t1_t2_addto 2pqrl 8pqrl
Matrix sizes=pXgand g Xr:

gen_matrix_mult_ext 2pgr 8pgr
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Table 4 (Continued)
Routine # flops i flops
(real (complex
operands) operands)

Sparse matrix in packed vector form has length n:

sparse_matvec_mult 2n 8n
sparse_vecmat_mult 2n 8n

Sparse matrix in packed vector form has length n; matrix has r
columns:

sparse_mat_gen_mat_mult 2nr 8nr
gen_mat_sparse_mat_mulit 2nr 8nr

Block sparse matrix has p blocks of size m X n:

block_sparse_matrix_vector_mult 2mnp 8mnp
vector_block_sparse_matrix_mult 2mnp 8mnp
block_sparse_mat_gen_mat_muit 2mnp 8mnp
gen_mat_block_sparse_mat_mult 2mnp 8mnp

Block size = p X g; product of extents of grid axes = N; number of
instances = I

grid_sparse_matrix_vector_muit 2pgNI 8pgNI
vector_grid_sparse_matrix_mult 2pgNI 8pgNI

Block sizes = p X g, q¢ X r, and p X r; product of extents of grid axes =
N; number of instances = I

grid_sparse_mat_gen_mat_muit 2pgrNI 8pqrNI
gen_mat_grid_sparse_mat_muit 2pqrNI 8pqrNI
Version 3.1, June 1993 41
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Table 4 (Continued)
Routine it flops # flops
(real (complex

operands) operands)

Matrix size = m X n, r = number of right-hand sides, / = number of
instances:

gen_lu_factor [m-(n3)In ] A[m-(n/3)In?I
gen_lu_solve 2r(2m-n)nl 8r(2m-n)nl
gen_lu_solve_tra 2r2m-n)nl 8r(2m-n)nl
gen_lu_apply_|_inv r(2m-n)nl 4r(2m-n)nl
gen_lu_apply_u_inv r(2m-nnl 4r(2m-n)nl
gen_lu_apply_|_inv_tra r(2m-n)nl 4r(2m-n)nl
gen_lu_apply_u_inv_tra r(2m-n)nl 4r(2m-n)nl

Matrix size = m X n, r = number of right-hand sides, I = number of
instances:

gen_gqr_factor 2[m-(n/3)In?l  8[m-(n/3)In2I
gen_qr_solve ‘ r@m-n)nl 4rldm-nynl
gen_qr_solve_tra rlm-n)nl ar@m-n)nl
gen_qr_apply_q 2rmnl 8rmnl
gen_qr_apply_q tra 2rmnl 8rmnl
gen_qr_apply_r_inv r(2m-n)nl 4r2m-n)nl
gen_qgr_apply_r_inv_tra r(2m-n)nl 4r(2m-n)nl

Matrix size = n X n, r = number of right-hand sides:
gen_g]_invert 2n3 8n3
gen_g|_solve . 2/3(n3+2n%r)  8/3(n3+8n%r)
Matrix size = n X n, r = number of right-hand sides:

gen_lu_factor_ext 2/3)n3 8/3)n3
gen_lu_solve_ext 2n%r 8n?r

Matrix size = m X n, r = number of right-hand sides:

gen_qr_factor_ext 2[m-(n/3)In?  8[m-(n/3)]n?
gen_qr_solve_ext r@m-n)n 4r4m-n)n

T,
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Table 4 (Continued)

Routine # flops # flops
(real (compiex
operands) operands)
gen_banded_factor See gen_tridiag_factor
gen_banded_solve and related routines, below

n = number of equations or block equations (=length of diagonal)

I = number of instances; r = number of right-hand sides per system

b = block size = length of axis 1 of a, b, and ¢ in block_tridlag_factor

p = number of processing elements spanned by axis axis

q = product of numbers of processing elements spanned by the instance
axes (pq = the total number of processing elements)

The flop count for each _solve routine is the sum of the flop counts for
the corresponding _factor and _solve_factored routines.

gen_tridiag_factor”

CMSSL_pipeline_ge 8nl 26nl
CMSSL_pge_piv[_val] 12nl 41nl
CMSSL_substr_cr I(14n+14plogp  1(54n+54plogp)
CMSSL_substr_pge I(14n+8p) I(54n+26p)
CMSSL_substr_transp  I(14n+7p) 1(54n+24p

CMSSL_substr_ber  14nl+14max(pqlogp, (p-1)I) (real)
54nl+54max(pqlogp, (p-1)I) (complex)

gen_tridlag_solve_tactored”

CMSSL _pipeline_ge 6nlr 22nIr
CMSSL_pge_piv[_val] Inlr 30nir
CMSSL_substr_cr Ir(Sn+4plogp) Ir(38n+16plogp)
CMSSL_substr_pge Ir(9n+5p) Ir(38n+22p)
CMSSL_substr_transp Ir(9n+5p) Ir(38n+22p)

CMSSL_substr_ber 9nlr+9max(pglogp, (p-1)Ir) (real)
38nlr+38max(pqlogp, (p-1)Ir (complex)

* Whenever the equation axis (axis axis) is local to a processing element, the flop count is equal to that
of CMSSL_pipeline_ge. Furthermore, some flop counts involving p and g are valid only for problems
that “fit the machine” (problems that do not require garbage masks).
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Table 4 (Continued)
Routine i flops # flops
(real (complex

operands) operands)

block_tridiag_factor

CMSSL_pipeline_ge 6nlb? 24nIb?
CMSSL_substr_cr Ib3(14n+14plogp) Ib3(56n+56plogp)
CMSSL_substr_pge I3 (14n+6p) I3 (56n+24p)

CMSSL_substr_ber b3(14nI+14max(pglogp, (p-1))) (real)
b3(56nI+56max(pglogp, (p-1)I)) (complex)
block_tridlag_solve_factored

CMSSL_pipeline_ge 6nlrb? 24nirb?
CMSSL_substr_cr Irb?(10n+10plogp) Irb*(40n+40plogp)
CMSSL_substr_pge Irb?(10n+6p) Irb*(40n+24p)

CMSSL_substr_bcr  b2(10nIr+10max(pglogp, (p-1)Ir)) (real)
b2(40nlr+40max(pqlogp, (p-1)Ir)) (complex)

Matrix size = n; number of vectors to be transformed = r:

sym_tred 4/3)n3
sym_to_tridiag 2n2r
tridiag_to_sym 2n%r

N = length of active axis; I = product of other axis lengths:

fit SNlogN
fft_detailed 5INilogN

m = number of rows, n = number of columns:

gen_simplex approx. 2mn flops/iteration

* Whenever the equation axis (axis axis) is local to a processing element, the flop count is equal to that
of CMSSL_pipeline_ge. Furthermore, some flop counts involving p and g are valid only for problems
that “fit the machine” (problems that do not require garbage masks).
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Chapter 1. Introduction to the CMSSL for CM Fortran

1.8 CM Fortran Performance Enhancements with CMSSL

The following CM Fortran intrinsic and utilities yield better performance when
the program is linked with CMSSL:

MATMUL
CMF_RANDOM
CMF_ORDER
CMF_SORT
CMF_RANK

For example, when CMSSL is linked in, a call to CMF_random generates a call
to fast_rng; a call to CMF_randomize(seed) generates a call to initialize_fast_rng
with the same seed value and default parameters for table_lag, short_lag, and
width. (The CMSSL random number generators are described in Chapter 12.)

NOTE

Since CMF_RANDOMIZE generates a call to initialize_fast_rng
when CMSSL is linked in, if you call initialize_fast_rng explic-
itly after calling CMF_RANDOMIZE (for example, to change the
CMSSL Fast RNG parameters), you will receive Initial-
ize_tast_rng return code -1, which indicates that a prior
initialization was overwritten. This code is informational only
and does not indicate an error.
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Chapter 2

Using the CM Fortran
CMSSL Interface

This chapter contains information about running CM Fortran programs that call
CMSSL routines. The following topics are included:

= creating a CM Fortran CMSSL program
& = using the CMSSL safety mechanism
r ’ * on-line sample code and man pages
‘ ® further reading

2.1 Creating a CM Fortran CMSSL Program

To use the CMSSL from within a CM Fortran program, follow these steps:

1. Read the CMSSL Release Notes for information specific to the CMSSL re-
lease you are using and for updates to the manual. Important information
such as switches for linking with the CMSSL may change from release to
release.

2. Include the header file /usr/include/cm/cmssl-cmf.h if you are
calling a CMSSL function or a CMSSL subroutine that uses predefined
symbolic constants. '

3. Place calls to CMSSL routines into CM Fortran code.

I i 3 4. Use the CM Fortran cmf command to compile your code.
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2.1.1

2.1.2

48

5. Use the -1lcmsslcm5 or ~lecmsslem5vu switch to link with the
CMSSL for the CM-5.

The rest of this chapter discusses these steps in detail.

Including the CMSSL Header File

A CM Fortran program that calls the CMSSL can access the appropriate header
file if you place the following line at the top of any program unit that makes a
CMSSL call:

INCLUDE ‘/usr/include/cm/cmssl-cmf.h’

This file declares the return values of CMSSL functions and defines symbolic
constants used as parameter values for some CMSSL routines.

The INCLUDE line is required only in CM Fortran code that contains CMSSL
function calls or uses predefined CMSSL symbolic constants. However, we rec-
ommend that you include the header file wherever you use the CMSSL. It is
easier to do this at the outset than to remember to add the INCLUDE line should
you add a CMSSL function call to your code in the future. Also, in the future, the
library is likely to make greater use of symbolic constants, which require the
definitions provided in the header file.

If the CM Fortran compiler cannot find the CMSSL include files, check your
partition manager for the existence of a path to the appropriate directory. If the
files appear to be missing, consult your system administrator or your Thinking
Machines Corporation customer service representative.

Calling CMSSL Routines

To invoke a CMSSL routine from within a CM Fortran program, first make sure
you are using compatible versions of CM Fortran and the CMSSL. The CMSSL
Release Notes shipped with the version you are using include a section describ-
ing which version of the CM Fortan compiler is required. Treat the CMSSL
routine as you would any other subroutine or function.
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Chapter 2. Using the CM Fortran CMSSL Interface

Compiling and Linking

After writing a CM Fortran program that calls CMSSL routines, compile it and
link it with the library. Compiling a CM Fortran CMSSL program is the same as
compiling other CM Fortran programs: use the cmf command. To compile the
program program on a CM-5 and link it with the CMSSL for the CM-5, issue one
of the following command lines at the UNIX prompt:

For the CM Fortran vector-units model:
$cmf -cm5 -vu -o program program.fcm -lcmsslcm5vu
For the CM Fortran (SPARC) nodes model:

$cmf ~cm5 -sparc -o program program.fcm -lcmsslcmS

Using the Correct Version of CMOST

The CMSSL is a layered product. Any CMSSL version requires a specific
CMOST version and a specific CM Fortran version. If these dependencies are
not observed, proper operation of the CMSSL routines is unlikely. Consulit the
most current version of the CMSSL Release Notes to find out which versions of
CM Fortran and CMOST are required by the current CMSSL.

Executing CMSSL Programs

Execute a CM Fortran CMSSL program just as you would any compiled CM For-
tran program. -

A Note about Aligning Arrays

Many CMSSL routines fail when supplied with a CM array that has been aligned
(using the CM Fortran CMF$ ALIGN directive) to an array of higher rank. CM
Fortran reuses the geometry of the ALIGN target, rather than the ALIGN source,
causing the CMSSL array rank checks to fail. It is recommended that you avoid
using arrays that are aligned to arrays of higher rank.
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2.3 Using the CMSSL Safety Mechanism

23.1

50

You can use the CMSSL safety mechanism in two ways:
® by setting the environment variable CMSSL_SAFETY
® by using the calls CMSSL_get_safety and CMSSL_set_safety in a program

Safety Mechanism Features

The CMSSL safety mechanism offers two basic features: it synchronizes the
CM-5 parallel processing elements and partition manager so that you can pin-
point the area of code that generated an error, and it performs error checking and
reports errors at several levels of detail.

Synchronization

The CM-5 parallel processing elements and partition manager operate asynchro-
nously with respect to one another. Without the CMSSL safety mechanism, an
error that occurs in the parallel processing elements is not reported to the parti-
tion manager until the next time the partition manager requests information from
or checks the status of the elements. Such a request or status check is known as
an implicit synchronization because it has the side effect of synchronizing the
processing elements and partition manager, allowing the processing elements to
report any accumulated errors. When an implicit synchronization occurs, there
is no way to tell exactly when the reported error occurred, or which module of
code produced it.

The CMSSL safety mechanism addresses this problem by forcing explicit syn-
chronization between the parallel processing elements and the partition manager
before, after, and within each CMSSL call in your code. The safety mechanism
traps and reports errors, indicating when the errors occurred in relation to the
synchronization points.

Error Checking and Reporting

The safety mechanism can perform error checking and generate run-time error
information at several levels of detail. You can turn safety checking on at any
level during all or part of a program. One level checks for errors in the usage and
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arguments of the CMSSL calls in your program; a more detailed level also checks
for errors generated by internal CMSSL routines. Examples of errors found and
reported by the safety mechanism include the following:

= A supplied or returned data element that should be numerical is not; for
example, it is identified as a “Not a Number” (NaN) or as infinity. (NaNs
are defined in the IEEE Standard for Binary Floating-Point Arithmetic.)

= The code generates a division by 0 (for example, because of bad data, a
user error, or an internal software problem).

= The code references a memory location that it has not initialized. The safe-
ty mechanism identifies this kind of error by writing NaNs to all allocated
processing element memory. If the code references a memory location
without first explicitly assigning it a numerical value, the NaN at that loca-
tion causes further errors that make the original erroneous reference easy
to find. (This is the same strategy used by CM Fortran safety checking
when you include the -safety=10 option on the cmf command line.)

As more debugging checks and safety levels are added in future releases, CMSSL
safety checking will become more exhaustive.

2.3.2 Levels of Error Checking

The CMSSL safety mechanism currently provides the following levels:

0 (off) Turns off the safety mechanism. Explicit synchronization
and error checking are not performed. This level is appro-
priate for production runs of code that has already been
thoroughly tested.

1 (on) Checks for and reports errors caused by incorrect usage
or arguments in high-level-language CMSSL calls. Per-
forms explicit synchronization before and after each call
and locates each error with respect to the synchronization
points. This safety level is appropriate during program
development or during runs for which a small perform-
ance penalty can be tolerated.

9 (full) Checks for and reports all level 1 errors, and in addition
any errors generated by the lower levels of code that are
called by the high- level-language CMSSL calls. Performs
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explicit synchronization in these lower levels of code and
locates each error with respect to the synchronization
points. This level performs all implemented error check-
ing and exacts a very high performance price. It is
appropriate for detailed debugging when a problem oc-
curs. If you cannot analyze and correct the problem,
provide your local site coordinator, applications engineer,
or Thinking Machines Corporation customer service rep-
resentative with the output generated by level 9 safety
checking.

At levels 1 and 9, some safety mechanism error messages are displayed at the
terminal when you run the program; other information appears in the backtrace
when you use a debugger such as cmdbx.

If you report a software problem to your local site coordinator, applications engi-
neer, or Thinking Machines Corporation customer service representative, you
may be asked to run your program with the CMSSL safety mechanism enabled
at a level other than 0, 1, or 9. These additional levels are used for pinpointing
problems in the internal software or for obtaining internal status information.

Setting the CMSSL Safety Environment Variable

To set the CMSSL safety level using the CMSSL_SAFETY environment variable,
issue the command

setenv CMSSL SAFETY { 0 | 1 | 9 | off | on | full }

choosing one of the listed options. As indicated above, 0 is equivalent to off, 1
to on, and 9 to full.

The advantage of using the CMSSL_SAFETY environment variable is that you can
set or change the safety level without recompiling your code.

Using CMSSL Safety from within a Program

To set the CMSSL safety level, issue the following call and specify the desired
level in the integer argument n:

cmssl_set_safety (n)
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ing the CM Fortran CMSSL Interfac

To obtain the current CMSSL safety level, issue the following call:
cmssl_get_safety ()

The advantage of using these calls from within a program is that you can set or
obtain the safety level at any point within your code. However, you must recom-
pile the code each time you change these calls.

NOTE

The inner product, 2-norm, outer product, matrix vector multi-
plication, vector matrix multiplication, and matrix
multiplication routines described in Chapter 3 perform error
checking only when the CMSSL safety mechanism is on. There-
fore, we strongly recommend that you turn CMSSL safety on
when testing new programs that call these routines.

L)

2.4 On-Line Sample Code and Man Pages

Included with the CMSSL are sample on-line programs that demonstrate how to
call each CMSSL routine. You are encouraged to experiment with these sample
programs. Also included with the CMSSL are on-line man pages for all routines.

The on-line sample programs are located in subdirectories of the CMSSL exam-
ples directory. The default location for the examples directory is

/usr/examples/cmssl.

Examples for the operation operation are included in the subdirectory
operation/cmf

or

- ’ operation/sub-operation/cmf
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of the examples directory. For example, the sample code for the routine that per-
forms eigenvector analysis using the Jacobi method is located in the subdirectory

eilgen/jacobl/cmf |

of the examples directory. If you do not find the on-line examples in /usr/
examples/cmssl, check with your system administrator (or the person who
installs the CMSSL at your site) to find out where they were installed.

To read the on-line man page for a routine, enter the command
man routine_name

at the UNIX prompt.

Further Reading

For more detailed information about CM Fortran, consult the latest versions of
the books listed below.

®  Getting Started in CM Fortran
Offers a brief introduction to using the CM Fortran language.

® CM Fortran Programming Guide

Offers a more detailed, task-oriented introduction to all the major features
of the CM Fortran language.

® CM Fortran User's Guide

Includes complete descriptions of how to compile, link, and execute CM
Fortran code, as well as how to use the CM Fortran Utility Library.

® CM Fortran Utility Library Reference Manual

Provides reference and usage information about the procedures in the CM
Fortran Utility Library.

® CM Fortran Reference Manual
The definitive description of the CM Fortran language.
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Chapter 3

Dense Matrix Operations

This chapter describes the CM Fortran interface to the CMSSL dense matrix

operations. One section is devoted to each of the following:

inner product

2-norm

outer product

matrix vector multiplication

vector matrix multiplication

infinity norm

matrix multiplication

matrix multiplication with external storage

references

NOTE

The inner product, 2-norm, outer product, matrix vector multi-
plication, vector matrix multiplication, and matrix
multiplication routines perform error checking only when the
CMSSL safety mechanism is on. Therefore, we strongly recom-
mend that you turn CMSSL safety on when testing new
programs that call these routines.
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3.1 Inner Product

The multiple-instance inner product routines compute one or more instances of
an inner product of two vectors. The inner product either overwrites the destina-
tion CM array, is added to the destination CM array, or is added to a second CM
array (with the results placed in the destination CM array).

Given CM arrays ¥, ), Z, and u containing multiple instances of the vectors x, y,
z, and u, respectively, the multiple-instance inner product routines perform the
operations listed below for each instance.

Routine Operation Data Types
gen_inner_product z=z+xly real or complex
gen_Inner_product_noadd z=xly real or complex
gen_inner_product_addto z=u+ xTy real or complex
gen_inner_product_c1 z=z+xby complex only
gen_inner_product_ ci_noadd =z = xHy complex only
gen_inner_product_c1_addto z=u+ xHy complex only

Each single-instance (gbl_) inner product routine computes the global inner
product over all axes of two source CM arrays. The inner product either over-
writes the destination front-end scalar variable, is added to the destination
front-end scalar variable, or is added to a second front-end scalar variable (with
the results placed in the destination front-end scalar variable).

Given CM arrays x and y, and scalars a and f, the single-instance inner product
routines perform the operations listed below. In these formulas, the inner product
occurs over all axes of the arrays x and y.

Routine Operation Data Types
gbl_gen_inner_product o=o+xly real or
complex
gbl_gen_inner_product_noadd a=xTy real or
complex
gbl_gen_inner_product_addto a=p+xly real or
complex

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation

()

oz



Chapter 3. Dense Matrix Operations

A 4

gbl_gen_inner_product_c1 a=qa+ xHy complex only
gbl_gen_inner_product_c1_noadd o = xHy complex only
gbl_gen_inner_product_c1_addto o = B +xty complex only

Details are provided in the man page that follows.
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Inner Product

The multiple-instance inner product routines compute one or more instances of an inner
product of two vectors. The single-instance (gbl_) inner product routines compute the glob-
al inner product over all axes of two source CM arrays.

SYNTAX

gen_inner_product (z, x, y, x_vector_axis, y_vector_axis, ier)
gen_inner_product_noadd z, x, y, x_vector_axis, y_vector_axis, ier)
gen_inner_product_addto (z, x, ¥, u, x_vector_axis, y_vector_axis, ier)
gen_inner_product_c1 @z, x, y, x_vector_axis, y_vector_axis, ier)
gen_inner_product_c1_noadd (z, x, y, x_vector_axis, y_vector_axis, ier)
gen_inner_product_c1_addto z, x, 3, u, x_vector_axis, y_vector_axis, ier)
gbl_gen_inner_product (o, x, y, ier)

gbl_gen_inner_product_noadd (o, x, y, ier)

gbl_gen_inner_product_addto (o, x, y, B, ier)

gbl_gen_inner_product_c1 (o, x, y, ier)

gbl_gen_inner_product_c1_noadd (a, x, y, ier)

gbl_gen_inner_product_c1_addto (o, x, y, B, ier)

ARGUMENTS

z CM array of the same data type and precision as x and y, and rank
one less than that of x and y. The axes of z must match the instance
axes of x and y in order of declaration and extents. Thus, each pair
of vectors in x and y, respectively, corresponds to a single value z
in z.

x When you call one of the multiple-instance (gen_) routines, x
must be a real or complex CM array of rank > 2, with at least one
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non-serial instance axis. Contains one or more instances of x, the
first vector in the pair of vectors whose inner product is to be
computed. (For a single-instance problem, declare any instance
axes to have extent 1.) Axis x_vector_axis of x and axis y_vector_
axis of y must have the same extent. The remaining axes of x and y
(the instance axes) must match in order of declaration and extents.

When you call one of the single-instance (gbl_gen_) routines, x
must be a real or complex CM array of rank > 1.

y When you call one of the multiple-instance (gen_) routines, y
must be a CM array of the same rank and data type as x, with at
least one non-serial instance axis. Contains one or more instances
of y, the second vector in the pair of vectors whose inner product
is to be computed. (For a single-instance problem, declare any
instance axes to have extent 1.) Axis x_vector_axis of x and axis

_vector_axis of y must have the same extent. The remaining axes
of x and y (the instance axes) must match in order of declaration
and extents.

. When you call one of the single-instance (gbl_gen_) routines, y
I ) must be a CM array of the same data type, precision, rank, axis
extents, and layout as x.

u CM array of the same data type as x and y, rank one less than that
of x and y, and the same shape and layout as z. The axes of % must
match the instance axes of x and y in order of declaration and
extents. Thus, each pair of vectors x and y in x and y, respectively,
corresponds to a single value u in u.

o Front-end scalar variable of the same data type as x and y.
B Front-end scalar variable of the same data type as x and y.

x_vector_axis Scalar integer variable. Identifies the axis of x along which the
vectors lie.

y_vector_axis Scalar integer variable. Identifies the axis of y along which the
vectors lie.

ier Scalar integer variable. Return code. Upon return from one of the
multiple-instance (gen_) routines, contains one of the following
values:

£ , 0 Successful return.

;s
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-11

-12

-13

-22

-24

z, x,and y (and u, in _addto calls) are not all valid
CM arrays.

x and y do not have the same rank.

Axis x_vector_axis of x and axis y_ vector_axis
of y do not have the same extent.

The instance axes of x and y do not match in
order of declaration and extents.

z and u do not have the same shape and layout.

Z, x, and y (and u, in _addto calls) are not all of
the same data type and precision.

The data type is not real or complex (single or
double precision).

You called gen_inner_product_c1, gen_inner_
product_c1_noadd, or gen_inner_product_c1_
addto, but supplied data of a type other than com-
plex.

X_vector_axis or y_vector_axis is a bad axis num-
ber (it must be at least 1 and at most equal to the
rank of the corresponding array).

z does not have rank one less than that of x.

The axes of z do not match the instance axes of
x in order of declaration and extents.

Upon return from one of the single-instance (gbl_gen_) routines,
contains one of the following values:

x and y are not both valid CM arrays.
x and y do not have the same rank.
x and y do not have the same shape and layout.

x and y do not have the same data type and preci-
sion.

The data type is not real or complex (single or
double precision).
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-32  You called gbl_gen_inner_product_c1, gbl_gen_
inner_product_c1_noadd, or gbi_gen_inner_
product_c1_addto, but supplied data of a type
other than complex.

DESCRIPTION

Multiple-Instance Routines. The multiple-instance inner product routines perform
the operations listed below. The inner product either overwrites the destination CM
array, is added to the destination CM array, or is added to a second CM array (with the
results placed in the destination CM array).

Routine Operation Data Types
gen_inner_product z=z+ xTy real or complex
gen_inner_product_noadd z=xly real or complex
. gen_inner_product_addto Z=u+t xTy real or complex
g ’ gen_inner_product_c1 z=z+xby complex only
gen_inner_product_c1_noadd z = xfly complex only
gen_inner_product_c1_addto  z = u + xfly complex only

These routines require the source CM arrays to be at least two-dimensional, with at
least one non-serial instance axis. (The reason for this restriction is that the destination
array must have rank one less than that of the source CM arrays, but must also be a CM
array — and therefore not completely serial.) Thus, to compute the inner product of a
single pair of vectors, you must either declare any instance axes to have extent 1, or use
the single-instance inner product routines.

Upon successful completion of gen_inner_product or gen_inner_product_c1, the inner
product of each vector pair x and y in x and y, respectively, is added to the correspond-
ing value in z. :

Upon successful completion of gen_inner_product_noadd or gen_inner_product_c1_
noadd, the inner product of each vector pair x and y in x and y, respectively, overwrites
the corresponding value in z.
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Upon successful completion of gen_inner_product_addto or gen_inner_product_c1_

addto, the inner product of each vector pair x and y in x and y, respectively (added to
the corresponding value in u) overwrites the corresponding value in z.

Single-Instance Routines. The single—instancé inner product routines perform the op-
. . erations listed below. In these formulas, the inner product occurs over all axes of the
arrays x and y. The inner product either overwrites the destination front-end scalar vari-
able, is added to the destination front-end scalar variable, or is added to a second
front-end scalar variable (with the results placed in the destination front-end scalar

variable).
Routine

gbl_gen_inner_product

gbl_gen_inner_product_noadd

gbl_gen_inner_product_addto

gbl_gen_inner_product_c1
gbl_gen_inner_product_c1_noadd

gbl_gen_inner_product_c1_addto

Operation Data Types

a=oa+xly real or
complex

a = xTy real or
complex

a=p+xTy real or
complex

a = a + xHy complex only

o = xHty complex only

a=p+xHy complex only

Upon successful completion of gbl_gen_inner_product or gbl_gen_inner_product_c1,
the global inner product of x and y is added to a.

Upon successful completion of gbl_gen_inner_product_noadd or gbl_gen_inner_
product_c1_noadd, the global inner product of x and y overwrites a.

Upon successful completion of gbl_gen_inner_product_addto or gbl_gen_inner_
product_c1_addto, the global inner product of x and y (added to B) overwrites .

NOTES

62

Overlapping Variables. The arrays x and y may be the same variable; the arrays z and

u may be the same variable.
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Numerical Complexity: Multiple-Instance Routines. If the vectors contained in x
and y have length g, then for I instances, the number of floating-point operations for
real operands is

= 2gI for gen_inner_product, gen_inner_product_c1, gen_inner_product_addto,
and gen_inner_product_c1_addto

®  (2g-1)I for gen_inner_product_noadd and gen_inner_product_c1_noadd
while the number of floating-point operations for complex operands is

= 84! for gen_inner_product, gen_inner_product_c1, gen_inner_product_addto,
and gen_inner_product_c1_addto

® (8g-2)Ifor gen_inner_product_noadd and gen_inner_product_c1_noadd

Numerical Complexity: Single-Instance Routines. If the product of the axis extents
in each array (x and y) is Q, then the number of floating-point operations for real oper-
ands is

= 2Q for gbl_gen_inner_product, gbl_gen_inner_product_ci, gbl_gen_inner_
\ ’ product_addto, and gbl_gen_inner_product_c1_addto

=  2Q-1 for gbl_gen_inner_product_noadd and gbl_gen_inner_product_
c¢1_noadd

while the number of floating-point operations for complex operands is

= 8Q for gbl_gen_inner_product, gbl_gen_inner_product_c1, gbl_gen_inner_
product_addto, and gbl_gen_inner_product_c1_addto

=  8Q-2 for gbl_gen_inner_product_noadd and gbl_gen_inner_product
c¢1_noadd

EXAMPLES

Sample CM Fortran code that uses the inner product routines can be found on-line in
the subdirectory inner -product/cmf£/ of a CMSSL examples directory whose loca-
tion is site-specific.

L
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3.2 2-Norm

The multiple-instance 2-norm routine, gen_2_norm, computes one or more in-
stances of the 2-norm of a vector. Given a CM array x containing multiple
instances of a vector x, gen_2_norm performs the following operation for each
instance:

Data Type Operation
real 2= (xTx)12 = |
complex z= ()12 = |xj|

The single-instance 2-norm routine, gbl_gen_2_norm, computes the global
2-norm of a CM array as defined below. In these formulas, the norm is computed
over all axes of the array x.

Data Type Operation
real a = (xTx)12 = |ixl,
complex a = (xHx)12 = x|},

The norm is always a real value. Details are provided in the man page that fol-
lows.
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2-Norm

The multiple-instance 2-norm routine, gen_2_norm, computes one or more instances of the
2-norm of a vector. The single-instance 2-norm routine, gbl_gen_2_norm, computes the
global 2-norm of a CM array.

SYNTAX

gen_2_norm (2, x, X_vector_axis, ier)

gbl_gen_2_norm (o, x, ier)

ARGUMENTS

4 Real CM array of the same precision as x and rank one less than
that of x. The axes of z must match the instance axes of x in order
of declaration and extents. Thus, each vector x in x corresponds to
a single value z in z.

o Real front-end scalar variable.

x When you call gen_2_norm, x must be a real or complex CM array
of rank > 2, with at least one non-serial instance axis. It contains
one or more instances of the vector x whose 2-norm you want to
compute. (For a single-instance problem, declare any instance
axes to have extent 1.)

When you call gbl_gen_2_norm, x must be a real or complex CM
array of rank > 1.

x_vector_axis Scalar integer variable. Identifies the axis of x along which the
vectors lie.

ier Scalar integer variable. Return code. Upon return from gen_2_
norm, contains one of the following values:

0 Successful return.
-1 z and x are not valid CM arrays.

-2 x does not have a rank of at least 2.
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-13  x_vector_axis is a bad axis number (it must be at
least 1 and at most equal to the rank of x).

-22  z does not have rank one less than that of x.

-24  The axes of z do not match the instance axes of
x in order of declaration and extents.

-40  z and x do not have the same precision.
-41  zhas a data type other than real.

-42  x has a data type other than real or complex.

Upon return from gbl_gen_2_norm, contains one of the following
values:

0 Successful return.
-1 xisnotai'a]idCMarray.

-31  The data type is not real or complex (single or
double precision).

DESCRIPTION

Multiple-Instance Routine. For each instance, gen_2_norm performs the following
operation:

Data Type Operation
real 2= (Tx)¥2 = x|l
complex 2= ()12 = |zl

The gen_2_norm routine requires the source CM array to be at least two-dimensional,
with at least one non-serial instance axis. (The reason for this restriction is that the
destination array must have rank one less than that of the source CM array, but must
also be a CM array — and therefore not completely serial.) Thus, to compute the
2-norm of a single vector, you must either declare any instance axes to have extent 1, or
use the single-instance 2-norm routine.

Upon successful completion of gen_2_norm, the 2-nonﬁ of each vector in x overwrites
the corresponding value in z.
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Single-Instance Routine. The gbl_gen_2_norm routine performs the operations listed
below. In these formulas, the norm is computed over all axes of the array x.

Data Type Operation |
real a = (xTx)12 = x|,
complex a = (xx)l2 = |x||

Upon successful completion of gbl_gen_2_norm, the global 2-norm of x overwrites a.

NOTES

Numerical Complexity: Multiple-Instance Routine. If the vectors contained in x
have length g, then for I instances, the number of floating-point operations used by
gen_2_norm is [(2q-1)+8]! for real operands or [(4g-1)+8]! for complex operands. (8
is the flop count for the square root operation.)

Numerical Complexity: Single-Instance Routine. If the product of the axis extents

’ of x is Q, then the number of floating-point operations used by gbl_gen_2_norm is
(2Q-1)+8 for real operands or (4Q-1)+8 for complex operands. (8 is the flop count for
the square root operation.)

EXAMPLES

Sample CM Fortran code that uses the 2-norm routines can be found on-line in the
subdirectory

inner-product/cmf/

of a CMSSL examples directory whose location is site-specific.
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3.3 Outer Product

The outer product routines compute one or more instances of an outer product
of two vectors. The result either overwrites the destination CM array, is added to
the destination CM array, or is added to a second CM array.

Given CM arrays x, y, A, and B containing multiple instances of the vectors x and
y and the matrices A and B, respectively, the outer product routines perform the
operations listed below for each instance. In these descriptions, yT and yH denote
y transpose and y Hermitian, respectively.

Routine Operation ' Data Types
gen_outer_product A=A+xyT real or complex
gen_outer_product_noadd A=xyT real or complex
gen_outer_product_addto A=B+ xyT real or complex
gen_outer_product_c2 A=A+xH complex only
gen_outer_product c2_noadd A = xyH complex only

gen_outer_product_c2 addto A4 = B+ xyfl complex only

The man page following this section provides details.
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Outer Product

The routines described below compute one or multiple instances of an outer product of two

vectors.

SYNTAX

gen_outer_product

(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)

gen_outer_product_noadd (A, x, y, row_axis, col_axis, x_vector_axis,

y_vector_axis, ier)

gen_outer_product_addto (A, x, y, B, row_axis, col_axis, x_vector_axis,

gen_outer_product_c2

Y_vector_axis, ier)

(A, x, y, row_axis, col_axis, x_vector_axis,
Y_vector_axis, ier)

gen_outer_product_c2_noadd (4, x, y, row_axis, col_axis, x_vector_axis,

y_vector_axis, ier)

gen_outer_product_c2_addto (A, x, y, B, row_axis, col_axis, x_vector_axis,

y_vector_axis, ier)

ARGUMENTS
A

Version 3.1, June 1993

CM array of type real or complex and rank greater than or equal
to 2. Contains one or more instances of the destination matrix, A,
defined by axes row_axis (which counts the rows) and col_axis
(which counts the columns). Upon completion, each matrix
instance is overwritten by the result of the outer product call.

CM array of the same type and precision as A and rank one less
than that of A. Contains one or more instances of the first source
vector, x, embedded along axis x_vector_axis. Axis x_vector_axis
of x must have the same extent as axis row_axis of A. The
remaining axes of x must match the instance axes of A in length
and order of declaration. Thus, each vector in x corresponds to a
matrix in A.
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row_axis
col_axis
x_vector__axis
y_vector_axis

ier
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CM array of the same type and precision as A and rank one less
than that of A. Contains one or more instances of the second
source vector, y, embedded along axis y_vector_axis. Axis
y_vector_axis of y must have the same extent as axis col_axis of
A. The remaining axes of y must match the instance axes of A in
length and order of declaration. Thus, each vector in y
corresponds to a matrix in A.

CM array of the same type, precision, rank, shape, and layout as A.
Contains one or more embedded matrices B defined by axes
row_axis (which counts the rows) and col_axis (which counts the
columns). The remaining axes must match the instance axes of A
in length and order of declaration. Thus, each matrix in B
corresponds to a matrix in A. This argument is used only in the
gen_outer_product_addto and gen_outer_product_c2_addto calls.
These calls add each outer product to the corresponding matrix
within B and place the result in the corresponding matrix within
A. The contents of B are not changed by the operation (unless B
and A are the same variable).

Scalar integer between 1 and the rank of A. The axis of A and B
that counts the rows of the embedded matrix or matrices.

Scalar integer between 1 and the rank of A. The axis of A and B
that counts the columns of the embedded matrix or matrices.

Scalar integer between 1 and the rank of x. The axis of x along
which the elements of each embedded vector lie.

Scalar integer between 1 and the rank of y. The axis of y along
which the elements of each embedded vector lie.

Scalar integer variable. On return, contains one of the following
error codes (if the CMSSL safety mechanism is turned on):

0  Successful return.

-1 The rank of A < 2, or the rank of x or y is not equal
to (rank of A) - 1.

-2  The extent of x along axis x_vector_axis is not equal
to the number of rows in the matrices in A; or the
extent of y along axis y_vector_axis is not equal to the
number of columns in the matrices in A.
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-4 A, x,Yy, and B are not all the same data type (real or
complex), or you supplied non-complex data when
calling one of the conjugate (_c2) routines.

-8  The geometry of B differs from the geometry of A, or
the instance axes of x and y do not match those of A
in length and order of declaration.

-16  One or more of row_axis, col_axis, x_vector_axis,
and y_vector_axis are less than 1 or greater than the
rank of the associated CM array.

-32 A, x,y, or Bisnot a CM array.

DESCRIPTION

For each instance, the outer product routines perform the operations listed below. In
these descriptions, yT and yH denote y transpose and y Hermitian, respectively.

Routine

gen_outer_product
gen_outer_product_noadd
gen_outer_product_addto
gen_outer_product_c2
gen_outer_product_c2_noadd

gen_outer_product_c2_addto

Operation
A=A+xl
A=xT
A=B+xT
A=A+xfH
A= nf
A=B+xfH

Data Types

real or complex
real or complex
real or complex
complex only
complex only

complex only

In elementwise notation, for each instance gen_outer_product computes

AG)) = AG) + xG) * y()
and gen_outer_product_c2 computes
AG) = AG)) + x0) * y(§)

where y(j) denotes the conjugate of y(j).
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NOTES

Distinct Variables. A must be a variable distinct from the source arrays, x and y. The
source arrays can be the same variable, and B and A can be the same variable.

Numerical Stability. The algorithm for the outer product is numerically stable.

Numerical Complexity. If the matrices embedded in A and B have axis extents (p X gq),
axis x_vector_axis of x has extent p, and axis y_vector_axis of y has extent g, then for /
instances, the number of floating-point operations for real operands is

= 2 pql for gen_outer_product and gen_outer_product_addto
=  pql for gen_outer_product_noadd

while the number of floating-point operations for complex operands is
= 8 pql for gen_outer_product and gen_outer_product_addto
® 6 pql for gen_outer_product_noadd

Each conjugate routine performs the same number of floating-point operations as the
corresponding non-conjugate routine.

EXAMPLES

Sample CM Fortran program that uses the outer product routines can be found on-line
in the subdirectory

outer-product/cmf/

of a CMSSL examples directory whose location is site-specific.
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3.4 Matrix Vector Multiplication

The matrix vector multiplication routines compute one or more matrix vector
products. Given CM arrays y, x, v, and A containing multiple instances of the
vectors y, x, and v and the matrix A, respectively, the matrix vector multiplication
routines perform the operations listed below for each instance. In these descrip-

tions, A denotes the conjugate of A.
Routine Operation
gen_matrix_vector_muit | y=y+Ax
gen_matrix_vector_mult_noadd y=Ax
gen_matrix_vector_muilt_addto y=v+Ax
gen_matrix_vector_mult_c1 y=y+Ax
gen_matrix_vector_mult_c1_noadd y = Ax
gen_matrix_vector_mult_c1_addto y=v+Ax

The man page following this section provides details.
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real or complex
real or complex
real or complex
complex only
complex only

complex only
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Matrix Vector Multiplication

The matrix vector multiplication routines compute one or more instances of a matrix vector

product.

SYNTAX

gen_matrix_vector_mult

O, A, x, y_vector_axis, row_axis, col_axis,
X_vector_axis, ier)

gen_matrix_vector_mult_noadd O, A, x, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

gen_matrix_vector_mult_addto (O, A, x, v, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

gen_matrix_vector_mult_c1 (O, A, x, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

gen_matrix_vector_mult_c1_noadd (y, A, x, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

gen_matrix_vector_mult_ci_addto (y, A, x, v, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

ARGUMENTS
y

74

CM array of rank greater than or equal to 1 and type real or
complex. Contains one or more instances of the destination vector
y, embedded along axis y_vector_axis. Axis y_vector_axis of y
must have the same extent as axis row_axis of A. Upon
completion, each vector instance is overwritten by the result of the
matrix vector multplication call.

CM array of the same type and precision as y and rank one greater
than that of y. Contains one or more instances of the matrix A4,
defined by axes row_axis (which counts the rows) and col_axis
(which counts the columns). The remaining axes must match the
instance axes of y in length and order of declaration. Thus, each
matrix in A corresponds to a vector in y. The contents of A are not
changed during execution.
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y_vector_axis

row_axis

col_axis

X_vector_axis

ier
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CM array of the same rank, type, and precision as y. Contains one
or more instances of x, the vector that is to be multiplied by the
matrix A, embedded along axis x_vector_axis. Axis x_vector_axis
of x must have the same extent as axis col_axis of A. The
remaining axes of x must match the instance axes of y in length
and order of declaration. Thus, each vector in x corresponds to a
vector in y. The contents of x are not changed during execution.

CM array of the same rank, type, precision, shape, and layout as y.
This argument is used only in the gen_matrix_vector_mult_addto
and gen_matrix_vector_mult_c1_addto calls. It contains one or
more instances of the vector v that is to be added to the matrix
vector product, embedded along axis y_vector_axis. The contents
of v are not changed during execution, unless v is the same
variable as y.

Scalar integer between 1 and the rank of y. The axis of y and v
along which the elements of the embedded vectors lie.

Scalar integer between 1 and the rank of A. The axis of A that
counts the rows of the embedded matrix or matrices.

Scalar integer between 1 and the rank of A. The axis of A that
counts the columns of the embedded matrix or matrices.

Scalar integer between 1 and the rank of x. The axis of x along
which the elements of the embedded vectors lie.

Scalar integer variable. Upon return, contains one of the following
error codes (if the CMSSL safety mechanism is turned on):

0  Normal return.

-1  Rank(x) # rank(y) # rank(4) -1.

-2 Axis row_axis of A and axis y_vector_axis
of y do not have the same extent,
or axis col_axis of A and axis x_vector_axis
of x do not have the same extent.

-4  Matrix or vectors are not of the same data type
(real or complex); or you supplied non-complex
data when calling one of the conjugate (_c1) routines.

-8  Instance axes of the input CM arrays do not
match in length and order of declaration; or
y and v do not have the same
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rank, shape, and layout.
-32 A, x,y orvisnotaCM array.

DESCRIPTION

For each instance, the matrix vector multiplication routines perform the operations
listed below. In these descriptions, A denotes the conjugate of A.

Routine Operation Data Types
gen_matrix_vector_mult y=y+Ax real or complex
gen_matrix_vector_mult_noadd y = Ax real or complex
gen_matrix_vector_muit_addto y=v+Ax real or complex
gen_matrix_vector_mult_c1 y=y+Ax complex only
gen_matrix_vector_mult_c1_noadd y = Ax complex only
gen_matrix_vector_mult_c1_addto y =v + Ax complex only

NOTES
Distinct Variables. The arrays y, A, and x must be distinct variables. However, v and y
can be the same variable.

Numerical Stability. The algorithm is numerically stable.

Numerical Complexity. If the matrices embedded in A have axis extents (p X g), axis
x_vector_axis of x has extent g, and axis y_vector_axis of y has extent p, then for 1
instances, the number of floating-point operations performed is shown below.

Real Operands Complex Operands
gen_matrix_vector_mult 2 pql 8 pql
gen_matrix_vector_mult_addto 2 pql 8 pql
gen_matrix_vector_mult_noadd Cpg-p1 Bpg-2p) 1

Each conjugate routine performs the same number of floating-point operations as the
corresponding non-conjugate routine.
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EXAMPLES

Sample CM Fortran code that uses the matrix vector multiplication routines can be
found on-line in the subdirectory

matrix-vector/cmf/

of a CMSSL examples directory whose location is site-specific.
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3.5 Vector Matrix Multiplication

The vector matrix multiplication routines compute one or more vector matrix
products. Given CM arrays y, x, v, and A containing multiple instances of the
vectors y, x, and v and the matrix A, respectively, the vector matrix multiplication
routines perform the operations listed below for each instance. In these descrip-
tions, A denotes the conjugate of A.

Routine Operation Data Types
gen_vector_matrix_mult yT =yl + xT4 real or complex
gen_vector_matrix_mult_noadd  yT = xTA real or complex
gen_vector_matrix_mult_addto yT=vT 4+ xT4 real or complex
gen_vector_matrix_mult_c2 yT =yT + xT4 ~ complex only
gen_vector_matrix_mult_c2_noadd yT = xT4 complex only

gen_vector_matrix_mult_c2_addto yT =vT+xTA  complex only

The man page following this section provides details.
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Vector Matrix Multiplication

product.

-The vector matrix multiplication routines compute one or more instances of a vector matrix

SYNTAX

gen_vector_matrix_muit

O, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)

gen_vector_matrix_mult_noadd (O, A, x, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

gen_vector_matrix_mult_addto (, A, x, v, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

gen_vector_matrix_mult_c2 O, A, x, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

gen_vector_matrix_mult_c2_noadd (3, A, x, y_vector_axis, row_axis, col_axis,

Xx_vector_axis, ier)

gen_vector_matrix_mult_c2_addto (y, A, x, v, y_vector_axis, row_axis, col_axis,

X_vector_axis, ier)

ARGUMENTS
y

Version 3.1, June 1993

CM array of rank greater than or equal to 1 and type real or
complex. Contains one or more instances of the destination vector
y, embedded along axis y_vector__aﬁs. Axis y_vector_axis of y
must have the same extent as axis col_axis of A. Upon successful
completion, each vector instance is overwritten by the result of the
vector matrix multplication call.

CM array of the same type and precision as y and rank one greater
than that of y. Contains one or more instances of the matrix A,
defined by axes row_axis (which counts the rows) and col_axis
(which counts the columns). The remaining axes must match the
instance axes of y in length and order of declaration. Thus, each
matrix in A corresponds to a vector in y. The contents of A are not
changed during execution.
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y_vector_axis

row_axis

col_axis

X_vector_axis
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CM array of the same rank, type, and precision as y. Contains one
or more instances of the vector x that is to be multiplied by the
matrix A, embedded along axis x_vector_axis. Axis x_vector_axis
of x must have the same extent as axis row_axis of A. The
remaining axes of x must match the instance axes of y in length
and order of declaration. Thus, each vector in x corresponds to a
vector in y. The contents of x are not changed during execution.

CM array of the same rank, type, precision, shape, and layout as y.
This argument is used only in the gen_vector_matrix_muit_addto
and gen_vector_matrix_mult_c2_addto calls. It contains one or
more instances of the vector v that is to be added to the vector
matrix product, embedded along axis y_vector_axis. The contents
of v are not changed during execution, unless v is the same
variable as y.

Scalar integer between 1 and the rank of y. The axis of y and v
along which the elements of the embedded vectors lie.

Scalar integer between 1 and the rank of A. The axis of A that
counts the rows of the embedded matrix or matrices.

Scalar integer between 1 and the rank of A. The axis of A that
counts the columns of the embedded matrix or matrices.

Scalar integer between 1 and the rank of x. The axis of x along
which the elements of each vector lie.

Scalar integer variable. Upon return, contains one of the following
error codes (if the CMSSL safety mechanism is turned on):

0  Normal return.

-1  Rank(x) # rank(y) # rank(A) -1.

-2 Axis col_axis of A and axis y_vector_axis
of y do not have the same extent,
or axis row_axis of A and axis x_vector_axis
of x do not have the same extent.

-4  Matrix or vectors are not of the same data type
(real or complex); or you supplied non-complex data
when calling one of the conjugate (_c2) routines.

-8  Instance axes of the input CM arrays do not
match in length and order of declaration; or
y and v do not have the same
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rank, shape, and layout.
-32 A, x,y,orvisnotaCM array.

DESCRIPTION

For each instance, the vector matrix multiplication routines perform the operations
listed below. In these descriptions, A denotes the conjugate of A.

Routine Operation Data Types
gen_vector_matrix_mult yT = yT 4+ xT4 real or complex
gen_vector_matrix_mult_noadd  yT = xTA real or complex
gen_vector_matrix_mult_addto yr=vT4+xT4 real or complex
gen_vector_matrix_mult_c2 yT=yT+xT4A  complex only
gen_vector_matrix_mult_c2_noadd yT = xT4 complex only

gen_vector_matrix_mult_c2_addto yT =T + xT4 complex only

NOTES
Distinct Variables. The arrays y, A, and x must be distinct variables. However, v and y
can be the same variable.

Numerical Stability. The algorithm is numerically stable.

Numerical Complexity. If the matrices embedded in A have axis extents (p X g), axis
x_vector_axis of x has extent g, and axis y_vector_axis of y has extent p, then for J
instances, the number of floating-point operations performed is shown below.

Real Operands Complex Operands
gen_vector_matrix_mult 2pql 8 pql
gen_vector_matrix_mult_addto 2 pql 8 pql
gen_vector_matrix_mult_noadd Qpg-91 Bpg-291

Each conjugate routine performs the same number of floating-point operations as the
corresponding non-conjugate routine.
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EXAMPLES

Sample CM Fortran code that uses the vector matrix multiplication routines can be
found on-line in the subdirectory

vector-matrix/cmf/

of a CMSSL examples directory whose location is site-specific.
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3.6 Infinity Norm

Given a CM array A containing one or more matrices A, the gen_infinity_norm
routine computes the infinity norm of each matrix A. Details are provided in the
man page that follows.

The infinity norm of a matrix A-1 can be estimated based on the QR or LU factors
of A using the method developed by Hager (see reference 10 listed in Section
3.9). The gen_lu_infinity_norm_inv and gen_gqr_infinity_norm_inv routines, de-
scribed in Chapter 5, perform these estimations.
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Infinity Norm

Given one or more matrices embedded in a CM array, the gen_infinity_norm routine com-

CMSSL for CM Fortran (CM-5 Edition)

putes the infinity norms of the matrices.

SYNTAX

gen_Infinity_norm

(a, A, nl, n2, row_axis, col_axis, ier)

ARGUMENTS

a

nl

n2

Real CM array with the same rank and precision as A. Axes
row_axis and col_axis must have extent 1.

Upon successful completion of gen_infinity_norm, the infinity
norm of each matrix A within A is placed in the corresponding
position of a. For example, if A has dimensions 16 X 16 x 4
X 128, with row_axis = 2 and col_axis = 3, then upon comple-
tion, a(r, 1, 1, s) contains the infinity norm of the matrix
consisting of A(r, :, :, ).

Real or complex CM atray of rank > 2.

When you call gen_infinity_norm, A must contain one or more
embedded matrices A whose infinity norms you want to com-
pute. Each matrix A is assumed to be dense with dimensions
nl X n2. The axis identified by row_axis must count the rows
of the embedded matrices; the axis identified by col_axis
must count the columns of the matrices. Axes row_axis and
col_axis may have extents greater than nl and n2, respective-
ly; that is, each instance of A may be contained in the upper
left-hand nl X n2 elements of a larger matrix within A.

Scalar integer variable. The number of rows in each matrix
embedded in A.

Scalar integer variable. The number of columns in each
matrix embedded in A.
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row_axis Scalar integer variable. The axis that counts the rows of the
matrices A embedded in A.

col_axis Scalar integer variable. The axis that counts the columns of
the matrices A embedded in A.

ier Scalar integer variable. Return code; set to O upon successful

return, or to one of the following error codes:
-1 nl is invalid.
-2 n2 is invalid.
-8 The rank of a is not equal to the rank of A.
-32 A is not real or complex, a is not real, or
A and a do not have the same precision.
-64  row_axis or col_axis is invalid.

DESCRIPTION

Given one or more matrices A embedded in a CM array A, the gen_Infinity_norm rou-
tine computes the infinity norm of each A.

The infinity norm of a matrix A4, denoted here by || A ||, is defined by

A oo = | nax | Ax [l

X |loo= 1

where the infinity norm of a vector, || x ||, is defined as the maximum of the absolute
values of the vector components:

x|l = mgXIXiI

The infinity-norm condition number of a matrix A is equal to the product of || A || and
Il A7 fleo.
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EXAMPLES

Sample CM Fortran code that uses the gen_infinity_norm routine can be found on-line
in the subdirectory

infinlty-norm/cmf/

of a CMSSL examples directory whose location is site-specific.
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3.7 Matrix Multiplication

The matrix multiplication routines compute one or more matrix products. Given
CM arrays A, B, C, and D containing multiple instances of the matrices A4, B, C,
and D, respectively, the matrix multiplication routines perform the operations
listed below for each instance. In these descriptions, AT and AH denote A trans-
pose and A Hermitian, respectively.

Routine Operation Data Types
gen_matrix_mult C=C+AB real or complex
gen_matrix_mult_noadd C=AB real or complex
gen_matrix_mult_addto C=D+AB real or complex
gen_matrix_muit_t1 C =C +ATB real or complex
gen_matrix_mult_t1_noadd C=A'B real or complex
gen_matrix_mult_t1_addto C =D +ATB real or complex
gen_matrix_mult_h1 C=C +AHB complex only
gen_matrix_mult_h1_noadd C = AHB complex only

gen_matrix_mult_h1_addto C =D +AHB complex only
gen_matrix_mult_t2 C=C +ABT real or complex
gen_matrix_mult_t2_noadd C = ABT real or complex
gen_matrix_mult_t2_addto C =D +ABT real or complex
gen_matrix_mult_h2’ C=C+ABH complex only
gen_matrix_mult_h2_noadd C = ABH complex only
gen_matrix_mult_h2_addto C=D+ABH complex only
gen_matrix_mult_t1_t2 C = C +ATBT real or complex
.g'en__matrlx_mult_ﬂ _t2 noadd C =ATBT real or complex

gen_matrix_mult_t1_t2_addto C = D + ATBT real or complex
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The algorithm used depends on the axis extents of the arrays supplied. The man
page following this section provides details about this routine.
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Matrix Multiplication

The matrix multiplication routines compute one or more matrix products.

SYNTAX

gen_matrix_mult
gen_matrix_mult_noadd
gen_matrix_mult_addto
gen_matrix_mult_t1
gen_matrix_mult_t1_noadd
gen_matrix_mult_t1_addto
gen_matrix_mult_h1
gen_matrix_muit_h1_noadd
gen_matrix_mult_h1_addto
gen_matrix_mult_t2
gen_matrix_mult_t2_noadd
gen_matrix_mult_t2_addto
gen_matrix_muit_h2
gen_matrix_muit_h2_noadd
gen_matrix_mult_h2_addto
gen_matrix_mult_t1_t2
gen_matrix_mult_t1_t2_noadd

gen_matrix_muit_t1_t2_addto

(C, A, B, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)
(C, A, B, D, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)
(C, A, B, D, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)
(C, A, B, D, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)

(C, A, B, row_axis, col_axis, ier)
(C, A, B, D, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)

(C, A, B, D, row_axis, col_axis, ier)
(C, A, B, D, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)
(C, A, B, row_axis, col_axis, ier)

(C, A, B, D, row_axis, col_axis, ier)
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CM array of type real or complex and rank greater than or equal to
2. Contains one or more instances of the destination matrix C,
defined by axes row_axis (which counts the rows) and col_axis
(which counts the columns). Axis row_axis of C must have the
same extent as axis row_axis of A. Axis col_axis of C must have
the same extent as axis col_axis of B.

Upon successful completion, each matrix instance within C is
overwritten by the result of the matrix multiplication call.

CM array of the same rank, type, and precision as C. Contains one
or more instances of the left-hand factor matrix A, defined by axes
row_axis (which counts the rows) and col_axis (which counts the
columns). Axis col_axis of A must have the same extent as axis
row_axis of B. The contents of A are not changed during
execution.

CM array of the same rank, type, and precision as C. Contains one
or more instances of the right-hand factor matrix B, defined by
axes row_axis (which counts the rows) and col_axis (which
counts the columns). The contents of B are not changed during
execution.

CM array of the same rank, type, precision, shape, and layout as C.
This argument is used only in the calls whose names end in
“_addto.” It contains one or more instances of the matrix D that is
to be added to the matrix product, defined by axes row_axis
(which counts the rows) and col_axis (which counts the columns).
The contents of D are not changed during execution, unless D and
C are the same variable. '

Scalar integer between 1 and the rank of C. The axis of C, A, B,
and D that counts the rows of the embedded matrix or matrices.

Scalar integer between 2 and the rank of C. The axis of C, A, B,
and D that counts the columns of the embedded matrix or
matrices.

Scalar integer variable. Upon return, contains one of the following
error codes (if the CMSSL safety mechanism is turned on):

0  Normal return.
-1  Ranks of provided arrays are different or are not

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 3. Dense Matrix Operations Matrix Multiplication

at least 2.
-2 Non-conforming A and B axis extents.
-4 Non-conforming A and C axis extents.
-8  Non-conforming B and C axis extents.

~-16  The instance axes of A, B, and C do not match in
length and order of declaration; or C and D do not
have the same rank, shape, and layout.

-32  row_axis and/or col_axis is less than 1 or greater than
the rank of the arrays.

-64 C, A, B, or D is not a CM array.

-128 C, A, and B (and D, in _addto calls) do not all have
the same data type (real or complex), or you supplied
non-complex data when calling one of the conjugate
(_h1 or _h2) routines.

DESCRIPTION

For each instance, the matrix multiplication routines perform the operations listed
below. In these descriptions, AT and AH denote A transpose and A Hermitian, respec-
tively.

Routine Operation Data Types
gen_matrix_mult C=C+AB real or complex
gen_matrix_mult_noadd C=C real or complex
gen_matrix_mult_addto C=D+AB real or complex
gen_matrix_mult_t1 C=C+A'B real or complex
gen_matrix_muit_t1_noadd C = ATB real or complex
gen_matrix_mult_t1_addto C=D+A'B real or complex
gen_matrix_mult_h1 C=C+A4HB complex only
gen_matrix_muit_h1_noadd C = AHB complex only

gen_matrix_mult_h1_addto C=D+AHB complex only
gen_matrix_muit t2 C=C+ABT real or complex

gen_matrix_mult_t2_noadd C = ABT real or complex
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gen_matrix_mult_t2_addto C=D+ABT real or complex
gen_matrix_mult_h2 C=C+ABH complex only
gen_matrix_mult_h2_noadd C=ABH complex only

gen_matrix_mult_h2_addto C=D+ABH complex only

gen_matrix_mult_t1_t2 C=C+ATRT real or complex

gen_matrix_mult_t1_t2_noadd C = ATBT real or complex

gen_matrix_mult_t1_t2_addto C =D +ATBT  real or complex
The algorithm used depends on the axis extents of the arrays supplied.

For calls that do not transpose the matrices, the arrays conform correctly with the fol-
lowing axis extents for row_axis and col_axis:

Array axis_1extent axis_2 extent

A p q
B q r
C P r
D )/ r

For calls that transpose the matrix A, the arrays conform correctly with the following
axis extents for row_axis and col_axis:

Array axis_1extent axis_2 extent

A q p
B q r
C )4 r
D P r
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For calls that transpose the matrix B, the arrays conform correctly with the following
axis extents for row_axis and col_axis:

Array axis_1extent axis_2 extent

A p q
B r q
C )/ r
D p r

For calls that transpose both A and B, the arrays conform correctly with the following
axis extents for row_axis and col_axis:

Array axis_1extent axis_2 extent

A q p
B r q
C }/] r
D )4 r

NOTES
Distinct Variables. All input arrays must be distinct, except that C and D can be the
same variable.

Numerical Stability. The algorithm is numerically stable.

Numerical Complexity. If the matrices embedded in A have the axis extents listed in
the Description section, then for I instances, the number of floating-point operations
performed is shown below.

Real Operands Complex Operands
gen_matrix_mult 2pqrl 8 pgrl
gen_matrix_mult_addto 2 pgrl 8 pgrl
gen_matrix_muit_noadd Qpgr-pnlI Bpgr-2pn i
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Each conjugate routine performs the same number of floating-point operations as the
corresponding non-conjugate routine.

EXAMPLES

Sample CM Fortran code that uses the matrix multiplication routines can be found
on-line in the subdirectory

matrix-multiply/cmf/

of a CMSSL examples directory whose location is site-specific.
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3.8 Matrix Multiplication with External Storage

The gen_matrix_mult_ext routine performs the operation
Y=Y+AX

where Y is a matrix of size nI X m, X is a matrix of size n2 X m, and A is a matrix
of size nl X n2 that is too large to fit into core memory. The man page that fol-
lows provides details.
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Matrix Multiplication with External Storage

The gen_matrix_mult_ext routine performs the operation Y = Y + AX where Y is a matrix
of size nI X m, X is a matrix of size n2 X m, and A is a matrix of size nl X n2 that is too
large to fit into core memory.

SYNTAX

gen_matrix_mult_ext (¥, X, m, nl, n2, blk, type, unit, ier)

ARGUMENTS
Y CM array of rank 2, the same data type as A (real or complex), and
size nl X m. Upon return, contains Y + AX.
X CM array of rank 2, the same data type as A, and size n2 X m.
m Scalar integer variable. The number of columns in X and ¥.
nl Scalar integer variable. The number of rows in A and Y.
n2 Scalar integer variable. The number of rows in X and columns in
A
blk Scalar integer variable. Block size. The matrix A is partitioned
into blocks of blk columns, or panels. See the Notes section,
below, for guidelines for choosing bik.
type Scalar integer variable. The data type. Specify one of the
following values:
CMSSL_single_real real*4
CMSSL_double_real real*8
CMSSL_single_complex complex*8
CMSSL_double_complex complex*16
unit Scalar integer. Valid unit number associated with the file that

contains the matrix A stored in serial order (see the Notes below.)
Use the CM Fortran utility CMF_FILE_OPEN to associate a file
with a unit number (or use the equivalent utility to associate a
socket or device with a unit number). The gen_matrix_muit_ext
routine reads the matrix from unit and does not modify the file.
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ier Scalar integer variable. Return code. Set to 0 upon successful
return, or to -1 if the routine encounters an I/O error on unit.

DESCRIPTION

The gen_matrix_mult_ext routine performs the operation ¥ = ¥ + AX where Y is a
matrix of size nl X m, X is a matrix of size n2 X m, and A is a matrix of size nl X n2 that
is too large to fit into core memory.

NOTES

Include the CMSSL Header File. Because the routine described above uses symbolic
constants, you must include the line

INCLUDE ‘/usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls these routines. This file declares the types
of the CMSSL symbolic constants.

File Unit. The I/O unit unit must be assigned to a file before you call gen_matrix_muit_
ext. In CM Fortran, file assignment is done with the CMF_FILE_OPEN utility (or an
equivalent utility for a device or socket). For information regarding parallel I/O in
general, see the CM-5 /O System Programming Guide. For information about the CM
Fortran interface to parallel /O, see the CM Fortran Utility Library Reference Manual.
As described in this manual, there are essentially two modes of external storage: Fixed
Machine Size (FMS) and Serial Order (SO). Serial order is the familiar Fortran row-
major order and is the one used by the external matrix multiplication routine.
Therefore, A must be stored in serial order in file unit uniz. In this order, the data is
portable across the CM-5 external storage systems (DataVault, Scalable Disk Array,
HIPPI).

Choosing the Block Size. The gen_matrix_mult_ext routine partitions the matrix A
into block columns, or panels, 4;, of size n X bik:

A= [Ah A, ---,Am 1

The last panel, A,,, contains fewer than bik columns if blk is not a divisor of n. The
block size should be large enough to optimize machine utilization. Besides the alloca-
tion of X and Y, the in-core memory requirement for gen_matrix_mult_ext is
approximately (2v + 16)n*blk bytes, where v is the number of bytes in the data type of
A.
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EXAMPLES

Sample CM Fortran code that uses the external matrix multiplication routine can be
found on-line in the subdirectory

external/matrix-multiply/cmf/

of a CMSSL examples directory whose location is site-specific.
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3.9 References

For more information about the basic linear routines for dense matrices, see the
following references:
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Science Division, Reprint No. 2, August 1988.
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text.
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rithm. Ph.D. diss., Montana State University, 1969.
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Technical Report TR-216, 1992.
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Chapter 4

Sparse Matrix Operations

This chapter describes the CM Fortran interface to the basic linear algebra opera-
tions for sparse matrices. One section is devoted to each of the following topics:

introduction

arbitrary elementwise sparse matrix operations
arbitrary block sparse matrix operations

grid sparse matrix operations

references

4.1 Introduction

The CMSSL provides routines for basic linear algebra operations on sparse
matrices representing structured and unstructured grids. Both elementwise and
block sparse matrices are supported. The following operations are provided for
arbitrary elementwise sparse matrices, arbitrary block sparse matrices, and grid
sparse matrices:

sparse matrix X vector
vector X sparse matrix
sparse matrix X dense matrix

dense matrix X sparse matrix
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NOTE

The sparse matrix routines described in this chapter are
intended for general sparse matrices and (in the case of the grid
sparse matrix operations) for certain banded sparse matrices.
For banded sparse matrices that cannot be handled by the grid
sparse matrix operations, you can improve performance signifi-
cantly by writing your own multiplication routine that exploits
the band structure. More routines for banded sparse matrices
are planned for future CMSSL releases.

4.1.1 Arbitrary Sparse Matrix Operations

102

The primary intent of the arbitrary sparse matrix operations is to provide the ba-
sic building blocks for more complex sparse applications — for example, a
sparse iterative solver, or computation of the eigenvalues of the sparse matrices
by the Lanczos or Arnoldi method.

For applications that do not perform explicit sparse linear algebra operations, but
want to make use of some communication primitives used by the sparse basic
linear algebra functions, the CMSSL provides two utility functions: the gather
utility and the scatter utility. These utilities, which are described in Chapter 14,
are intended for use in applications such as the solution of partial differential
equations on unstructured discretizations, and optimization problems repre-
sented by sparse matrices occurring in network flow problems. A
communication compiler and a partitioning routine are also provided (see Chap-
ter 14).

Storage Representations

Two separate storage representations of the sparse matrix are supported (see ref-
erences 2 and 3 listed in Section 4.5). These data mappings are referred to as the
elementwise sparse matrix mapping and the block sparse matrix mapping. In the
elementwise data mapping, the zero data values of the matrix are ignored and the
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non-zero data values are stored row-wise. In the block sparse mapping, the
sparse matrix is stored as a collection of dense block matrices. In its full matrix
representation, this block matrix storage scheme is extremely flexible. The dense
blocks need not be composed of contiguous rows and columns, and may overlap
in any way. One possible application for the block sparse representation is the
finite element method. Structured finite element grids lead to a grid block sparse
data layout; unstructured grids result in an arbitrary block sparse layout. The two
storage schemes are described in more detail in Sections 4.2 and 4.3.

Gathering and Scattering

The CMSSL sparse matrix operations can be described briefly in three steps (see
reference 1). First, the source vector (or matrix) elements are “gathered” into
local vectors. The relevant local operation (matrix vector or matrix matrix) is
then performed. Finally, the results of the local operations are “scattered” back
to the destination vector (or matrix). If there is collision at the destination, the
colliding data values are added. (Note that in this context, “local” means local
to a block, and does not refer to the lower-level implementation or to processing
elements.) Examples illustrating the gathering and scattering processes are pro-
vided in Sections 4.2 and 4.3.

Optimization Switches

The arbitrary sparse matrix functions described in this chapter provide two opti-
mization switches. These optimizations are based on the premise that the
applications will use these sparse functions repeatedly. A marginal setup cost can
therefore be incurred before the first call to the sparse functions. The setup cost
is then amortized over several calls to the sparse matrix functions.

The first optimization switch allows the application to preprocess the “gather”
phase of the operation (see references 4 and 5). This strategy usually results in
a significant improvement in the performance of the function. The pre-proces-
sing phase requires additional processing element storage. The amount of storage
required is a strong function of the sparsity of the matrix and is determined at run
time by the setup functions. It is highly recommended that this additional storage
be freed as soon as the application is finished with the sparse functions. The deal-
location routines are also described in this chapter.

The second optimization feature provided by the sparse matrix operations is the
ability to permute the array elements randomly (see references 4, 6, 7, and 8).
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This process is referred to as a random permutation throughout this chapter. Ran-
dom permutations of the array elements are particularly useful in reducing the
routing conflicts that occur, and can reduce the time for data motion significantly.
Setup routines are provided to compute the random permutations. The setup rou-
tines return the relevant array masks and the location of the vector (or matrix)
elements after the random permutations. Most applications use the sparse matrix
vector products to produce vectors (or matrices) that are then used in other opera-
tions such as inner products and local arithmetic. With the proper use of the
masks, those other operations are invariant to the location of the vector (or ma-
trix) elements. Thus, the products need not be permuted back in the inner loop
of an application. Applications intending to use the sparse matrix functions are
strongly encouraged to use both the optimization switches.

Optimizing Array Layout

As with most other CMSSL operations, the performance of the sparse matrix op-
erations is a very strong function of the compiler layout directives used by the
application. In particular, the block sparse functions perform significantly better
when each dense block composing the sparse matrix is local to (contained with-
in) a processing element. You can achieve this result by using the detailed axis
descriptors of the CM Fortran CMF$LAYOUT directive.

Grid Sparse Matrix Operations

The grid sparse matrix routines operate on data from grid-based applications.
Coefficient matrix elements residing at each grid point P are multiplied by vector
or matrix elements residing at point P and its nearest-neighbor points. The result
is placed in product vector or matrix elements residing at point P. These routines
support multiple instances and block matrices.

Like the arbitrary sparse matrix routines, the grid sparse routines are designed
with the assumption that the application will use these functions repeatedly. A
marginal setup cost can therefore be incurred before the first call to the functions.
The setup cost is then amortized over several calls.
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4.2 Arbitrary Elementwise Sparse Matrix Operations

This section introduces the arbitrary elementwise sparse matrix operations. For
detailed information about the routines and their arguments, refer to the man
page at the end of this section.

4.2.1 The Arbitrary Elementwise Sparse Matrix Routines

Given a sparse matrix and a vector or dense matrix, the arbitrary elementwise
sparse matrix routines compute the product of the sparse matrix with the vector
or dense matrix. The following routines are provided:

sparse_matvec_mult Multiplies a sparse matrix by a vector.
sparse_vecmat_mult Multiplies a vector by a sparse matrix.
sparse_mat_gen_mat_mult Multiplies a sparse matrix by a dense matrix.
gen_mat_sparse_mat_muilt Multiplies a dense matrix by a sparse matrix.

The two routines in which the sparse matrix is the left-hand operand
(sparse_matvec_mult and sparse_mat_gen_mat_muit) use the following setup
and deallocation routines:

sparse_matvec_setup
deallocate_sparse_matvec_setup

The two routines in which the sparse matrix is the right-i.and operand
(sparse_vecmat_muit and gen_mat_sparse_mat_mult) use the following setup
and deallocation routines: ‘

sparse_vecmat_setup
deallocate_sparse_vecmat_setup

For information about setup and deallocation, refer to the Description section of
the man page following this section.

4.2.2 Storage of Sparse Matrices

Before calling the arbitrary elementwise sparse matrix routines, you must create
a vector (one-dimensional CM array) A to represent the sparse matriz. You must

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation 105



106

CMSSL for CM Fortran (CM-5 Edition)

also supply associated vectors, rows, cols, row_segments, and A_mask, and inte-
ger values, nrow and ncol. Refer to the man page following this section for
descriptions of these arguments. The following example is based on the argu-
ment definitions in the man page.

Example

The sparse matrix

(10 4 0]

0200
0003
5010

is represented by the vector
A=1142351]

along with associated vectors
rows = [112344]
cels = [132413]
row_segments = [TFTTT F]

In this case, since you need not mask any elements of A, you can supply the
scalar logical value .true. for the A_mask argument.

If you defined A to have extent 10, that is,
A=1]1423510000]

then the corresponding vectors would be
rows = [1123440000]
cols = [1324130000]
row_segments =[TFTTTFFFFF]

A_mask=[TTTTTTFFFF]
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4.2.3

4.2.4

Although other representations are possible, the current implementation requires
that the elements of each row be contiguous with one another.

For discussions of this common method of storing sparse matrices, see references
2 and 3 in the list in Section 4.5.

Saving the Trace

One preprocessing step in arbitrary elementwise sparse matrix operations is the
calculation of an optimization, or trace, for the communication pattern required
by the multiplication. The trace depends on the sparsity of the matrix (that is, the
positions of the non-zero elements); matrices with the same sparsity result in the
same trace.

If you set the itrace argument to 0 when you call sparse_matvec_setup or
sparse_vecmat_setup, the trace will be computed separately for each multiplica-
tion operation. However, if you are performing more than one multiplication
operation with matrices that have identical sparsities, you can improve perform-
ance significantly by having the setup routine calculate the trace once and save
it; you pass this trace to subsequent multiplication routine calls. To activate this
option, set itrace = 1 when you call sparse_matvec_setup or sparse_vecmat_
setup. If the sparsity of the matrix changes, you must call the setup routine again
to calculate a new trace.

The trade-off for the improved performance when you set itrace = 1 is that sav-
ing a trace requires a substantial amount of CM memory. To free this extra
memory, you must call deallocate_sparse_matvec_setup or deallocate_
sparse_vecmat_setup after all of the sparse matrix vector products associated
with one setup call have finished.

Random Permutation of Source and Destination Array
Element Locations

Along with the sparse matrix A, you must supply the arbitrary elementwise
sparse matrix routines with a source array, x, containing one or more vectors or
dense matrices to be multiplied by the sparse matrix; and a destination array, y,
containing corresponding vectors or dense matrices into which the results of the
multiplication are to be placed. The source and destination arrays may be the
same variable. They have rank 1 if you are calling sparse_matvec_mult or
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sparse_vecmat_mult, or rank 2 if you are calling sparse_mat_gen_mat_mult or
gen_mat_sparse_mat_mult. When you call one of the setup routines, the contents
of x and y are ignored; only the geometry is examined.

The sparse_matvec_setup or sparse_matvec_setup argument irandom, if set to
1, activates an option that uses an internal random permutation generator to re-
turn permutations of the source and destination array element locations. These
permutations affect all subsequent multiplication calls associated with the setup
call, as follows:

= Before calling the multiplication routines, you must permute the elements
of x using the source array permutation returned by the setup routine.

® The multiplication routine permutes the elements of y using the destina-
tion array permutation returned by the setup routine. Thus, the product
array is returned in permuted form.

Note that the source array permutation must be applied by your application,
while the destination array permutation is applied by the multiplication routine.

This feature involves a marginal preprocessing cost, but is extremely useful for
minimizing the routing conflicts that occur during the data motion phase of the
multiplication. In some cases, the permutations can reduce the communication
time and thus improve performance significantly. If you set irandom to 0, an
identity permutation is returned for both arrays.

The setup routine returns the source and destination array permutations in the
integer arrays where_is_x and where_is_y, respectively. If the source and des-
tination arrays have rank 2, each permutation moves elements within columns
only; each location remains in its original column. If the source and destination
arrays are the same variable, the same permutation is returned in where_is_x and
where_is_y. If you set irandom to 0, you may conserve memory by declaring
where_is_x and where_is_y as scalar integers with the value 0.

Along with the source and destination arrays, you must supply the routines with
two integer arguments, x_length and y_length, containing the true extents of the
first axes of x and y, respectively. That is, x_length contains the number of active
elements (for rank 1) or rows (for rank 2) in x, and y_length contains the number
of active elements (for rank 1) or rows (for rank 2) in y. In the permuted source
array that you provide to the multiplication routine, it is possible that the active
elements will no longer be confined to the first x_length locations (or rows, for
rank 2).
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If your source or destination array contains elements that must be masked, you
must supply the setup routine with a corresponding logical array, x_mask or
y_mask, that has the same axis extents and layout directives as x or y, respective-
ly. The setup routine ignores the initial contents of the masks. On return from the
setup, the values of the masks reflect the permutations returned in where_is_x
and where_is_y. If the source or destination array requires no masking, you may
provide the scalar logical value .true. for x_mask or y_mask, respectively. (An
example is provided below.)

NOTE

Product elements resulting from the multiplication are sent to the
permuted y locations; thus, the y returned by each multiplication
routine is the permuted destination array. Optionally, you may use
the information in y_mask and where_is_y to permute the ele-
ments of y back to their original positions after the multiplication
occurs. However, most applications do not require you to do this.

For detailed definitions of the returned values of x_mask, y_mask, where_is_x,
and where_is_y, refer to the man page at the end of this section. The example
below is based on the argument definitions in the man page.

For a discussion of random permutation of source vector element locations, see
references 4, 6, 7, and 8 listed in Section 4.5.

Example

Suppose you want to multiply the sparse matrix

104 0]

0200
0003
5010
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by a vector of length 4. In this example, x is one-dimensional with declared ex-
tent 6, and x_length is 4.

x =[x x x3 x¢g - -]

(The symbol - indicates a masked data element.) If you set irandom = 0, you can
supply the scalar value O for where_is_x and where_is_y; you need not permute
your source array before supplying it to the multiplication routine; and the multi-
plication routine does not permute the destination elements.

Howeyver, suppose you set irandom to 1, and sparse_matvec_setup assigns
where_is_x the values

where_is x = [6 1 3 2 4 5]

and x_mask the values
xmask = [TT TFFT].

In this case, you must permute the source array element locations as follows:
¥ =[x xx--x]

That is, you must use this template when permuting the elements of each x you
supply in subsequent sparse_matvec_mult calls associated with this setup.

In this same example, suppose y has declared extent 4 and true extent y_length
= 4. In this case, since there is no need for a destination mask, you can supply
the single scalar value y_mask = .true.. If sparse_matvec_setup assigned where_
is_y the values

where_is 'y =[2 1 4 3],
then the destination array is

y = [2x% xptdx3 Sxptxz 3x4].
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Arbitrary Elementwise Sparse Matrix
Operations

Given a sparse matrix and a vector or dense matrix, the routines described below compute
the product of the sparse matrix with the vector or dense matrix.

SYNTAX

sparse_matvec_setup (A_mask, row_segments, rows, cols, y, x, y_mask, x_mask,
where_is_x, where_is_y, y_length, x_length, irandom, itrace,
trace, ier)

sparse_matvec_mult (), A, x, rows, cols, row_segments, y_mask, A_mask, x_mask,
itrace, trace, ier)

sparse_mat_gen_mat_mult (y, A, x, rows, cols, row_segments, y_mask, A_mask,
x_mask, itrace, trace, ier)

deallocate_sparse_matvec_setup (trace, itrace)

sparse_vecmat_setup (A_mask, row_segments, rows, cols, y, x, y_mask, x_mask,
where_is_x, where_is_y, y_length, x_length, irandom, itrace,
trace, ier)

sparse_vecmat_mult (3, A, x, rows, cols, row_segments, y_mask, A_mask, x_mask,
itrace, trace, ier)

gen_mat_sparse_mat_mult (y, A, x, rows, cols, row_segments, y_mask, A_mask,
x_mask, itrace, trace, ier)

deallocate_sparse_vecmat_setup (trace, itrace)

ARGUMENTS

y CM array of the same rank as x and the same data type (real or
complex) as A. May be the same variable as x. The contents of this
array are ignored by the setup routines. Upon return from one of
the multiplication routines, contains the product of the sparse
matrix and x.
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A_mask

row_segments

rows

cols

Real or complex CM array of rank 1 containing — in packed
storage — the non-zero elements of the sparse matrix. The
elements of each row must be contiguous with one another. The
extent of A may be larger than the number of non-zero elements
in the sparse matrix.

If A contains elements that need masking, A_mask must be a
logical CM array of rank 1 with the same extent and layout
directives as A; it is used as a mask for A. Set an element of
A_mask to true. if the corresponding element of A is to be treated
as a non-zero element of the sparse matrix. Supply values for
A_mask before calling the setup routine; then use the same
A_mask when calling the associated multiplication routine.

If A does not contain elements that need masking, you can
conserve processing element memory by supplying the scalar
logical value .true. for A_mask.

Logical CM array of rank 1 with the same extent and layout
directives as A. Contains information about the sparsity of the
matrix. Set an element of row_segments to .true. if and only if the
corresponding element of A is the first non-zero element in a row
of the sparse matrix. Supply values for row_segments before
calling the setup routine. The setup routine does not alter the
values of row_segments. You must supply the same
row_segments values when calling the associated multiplication
routine; do not modify row_segments between the setup call and
the associated multiplication call.

Integer, one-based CM array of rank 1 with the same extent and
layout directives as A. When you call the setup routine, each
element of rows must contain the row number, in the sparse
matrix, of the corresponding element of A. Do not modify rows
after the setup routine returns; you must supply the multiplication
routine with the values contained in rows upon return from the
associated setup routine.

Integer, one-based CM array of rank 1 with the same extent and
layout directives as A. When you call the setup routine, each
element of cols must contain the column number, in the sparse
matrix, of the corresponding element of A. Do not modify cols
after the setup routine returns; you must supply the multiplication
routine with the values contained in cols upon return from the
associated setup routine.
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y_mask

x_mask

Version 3.1, June 1993

CM array of rank 1 or 2 and of the same data type and precision
as A. May be the same variable as y. The contents of this array are
ignored by the setup routines. Before calling the multiplication
routine, you must apply to x the permutation, if any, indicated by
the values that the setup routine assigned to where_is_x.

If y contains elements that need masking, y_mask must be a
logical CM array with the same rank, axis extents, and layout
directives as y; it is used as a mask for the destination array. The
setup routine ignores the initial contents. On return from the setup
routine, y_mask has the following values:

» If irandom = 0 and y has rank 1, y_mask (1:y_length) =
Jtrue.; all other elements of y_mask are .faise..

» If irandom = 0 and y has rank 2, then within each column
of y_mask, y_mask(1:y_length, I) = .true. and all other
elements of the column are .false..

» Ifirandom =1 and y has rank 1, then y_mask(where_is_y
(1:y_length)) = .true.; all other elements of y_mask are
Jfalse..

= Ifirandom = 1 and y has rank 2, then within each column
of y_mask, y_mask(where_is_y (k,]), I)) = .true. for k =
1:y_length; all other elements of the column are .false..

Do not modify y_mask between the setup call and the associated
multiplication call(s). When you call one of the multiplication
routines, you must supply the values assigned to y_mask by the
setup routine.

If y does not contain elements that need masking, you can
conserve processing element memory by supplying the scalar
logical value .true. for y_mask.

If x contains elements that need masking, x_mask must be a
logical CM array with the same rank, axis extents, and layout
directives as x; it is used as a mask for the source array. The setup
routine ignores the initial contents. On return from the setup
routine, x_mask has the following values:

» If irandom = 0 and x has rank 1, x_mask(1:x_length) =
Arue. and all other elements of x_mask are .false..
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= Ifirandom = 0 and x has rank 2, then within each column
of x_mask, x_mask(1:x_length, j) = .true.; all other ele-
ments of the column are .false..

s Ifirandom = 1 and x has rank 1, then x_mask(where_is_x
(1:x_length)) = .true.; all other elements of x_mask are
false..

s IHfirandom = 1 and x has rank 2, then within each column
of x_mask, x_mask(where_is_x(k, ), [)) = .true. for k =
1:x_length; all other elements of the column are .false..

Do not modify x_mask between the setup call and the associated
multiplication call(s). When you call one of the multiplication
routines, you must supply the values assigned to x_mask by the
setup routine.

If x does not contain elements that need masking, you can
conserve processing element memory by supplying the scalar
logical value .true. for x_mask.

If you set irandom = 0, you can conserve processing element
memory by supplying the scalar integer value O for where_is_x.

If you set irandom = 1, where_is_x must be an integer CM array
with the same rank, axis extents, and layout directives as x. The
initial contents are ignored. On return from the setup routine,
where_is_x has the following values:

» If irandom = 0, where_is_x(k) (for rank 1) or
where_is_x(k, I) (for rank 2) is simply k.

« If irandom = 1 and x has rank 1, where_is_x(k) is the lo-
cation to which the kth source array location must be
mapped.

s If irandom = 1 and x has rank 2, where_is_x(k,]) is the
row number to which location (k, I) of the source array
must be mapped.

If you set irandom = 0, you can conserve processing element
memory by supplying the scalar integer value 0 for where_is_y.

If you set irandom = 1, where_is_y must be an integer CM array
with the same rank, axis extents, and layout directives as y. The
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initial contents are ignored. On return from the setup routine,
where_is_y has the following values:

« If irandom = 0, where_is_y(k) (for rank 1) or where_
is_y(k,]) (for rank 2) is simply k.

» Ifirandom =1 and y has rank 1, where_is_y(k) is the loca-
tion to which the kth destination array location will be
mapped by the multiplication routine.

« If irandom = 1 and y has rank 2, where_is_y(k,]) is the
row number to which location (k, I) of the destination
array will be mapped by the multiplication routine.

Scalar integer variable. The true extent of the first axis of y.
Scalar integer variable. The true extent of the first axis of x.

Scalar integer variable. Must be 0 or 1. Setting irandom to 1
causes the setup routine to return random permutations of the
source and destination array element locations. If irandom is O,
identity permutations are returned.

Scalar integer variable. Must be 0 or 1. When you call the setup
routine, set itrace to 1 if you want the setup routine to calculate
and save an optimization, or trace, for the communication pattern
corresponding to the sparsity of the matrix. Set itrace to 0 if you
want each multiplication routine to calculate the trace
individually. The setup routine modifies the contents of itrace. Do
not modify itrace after the setup routine returns; you must supply
the associated multiplication and deallocation routines with the
value contained in itrace upon return from the setup routine.

Scalar integer variable. Internal variable. If you supplied itrace =
1 when calling the setup routine, then on return from the setup
routine, trace contains the address in CM memory where the trace
is stored. Do not modify trace after the setup routine returns; you
must supply the associated multiplication and deallocation
routines with the value contained in trace upon return from the
setup routine.

Scalar integer variable. Upon return from the setup routines, ier
contains one of the following codes:

Copyright © 1993 Thinking Machines Corporation 115



Arbitrary Elementwise Sparse Matrix Operations CMSSL for CM Fortran (CM-5 Edition)

0  Normal return.

-1 irandom is not equal to 0 or 1.

-2 itrace is not equal to O or 1.

-4 x_length is greater than the extent of the first
axis of x, or y_length is greater than the extent of
the first axis of y.

-8  x, x_mask, and where_is_x do not have the same
shape, or y, y_mask, and where_is_y do not have the
same shape.

-16  A_mask, row_segments, rows, and cols do not
have the same shape.
-64  trace is too large to fit in available memory.

Upon return from the multiplication routines, ier contains one of
the following codes:

0  Normal return.
-1 A, x, or y does not contain real or complex data.

DESCRIPTION

116

The arbitrary elementwise sparse matrix routines perform the operations listed below.
(In the formulas below, x and y denote vectors while X and Y denote matrices.
However, lowercase letters are used for both cases everywhere else in this text.)

sparse_matvec_mult y =Ax multiplies a sparse matrix by a vector
sparse_vecmat_mult yT =xTA  multiplies a vector by a sparse matrix
sparse_mat_gen_mat_mult Y = AX multiplies a sparse matrix by a dense matrix
gen_mat_sparse_mat_mult YT = XTA multiplies a dense matrix by a sparse matrix

The sparse matrix and the vector must be of the same data type (real or complex) and
the same precision; the sparse matrix is stored in packed form (vector argument A), as
described in the argument list.

To multiply a sparse matrix by a vector or dense matrix, follow these steps:
1. Call sparse_matvec_setup.

2. Call sparse_matvec_mult or sparse_mat_gen_mat_mulit.

To compute more than one product using sparse matrices that all have identical
sparsities, follow one call to sparse_matvec_setup with multiple calls to
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sparse_matvec_mult or sparse_mat_gen_mat_mult. If the sparsity changes,
start with Step 1 again.

3. After all sparse_matvec_mult or sparse_mat_gen_mat_mult calls associated
with the same sparse_matvec_setup call, call deallocate_sparse_matvec_setup
to deallocate the CM storage space required by the setup routine.

To multiply a vector or dense matrix by a sparse matrix, follow these steps:
1. Call sparse_vecmat_setup.

2. Call sparse_vecmat_mult or gen_mat_sparse_mat_muit.

To compute more than one product using sparse matrices that all have identical
sparsities, follow one call to sparse_vecmat_setup with multiple calls to
sparse_vecmat_mult or gen_mat_sparse_mat_mult. If the sparsity changes,
start with Step 1 again.

3. After all sparse_vecmat_mult or gen_mat_sparse_mat_mult calls associated
with the same sparse_vecmat_setup call, call deallocate_sparse_vecmat_setup
to deallocate the CM storage space required by the setup routine.

More than one setup may be active at a time. That is, you may call the setup routine
more than once without calling the deallocation routine.

Setup Phase. The setup routine analyzes the sparsity of the matrix, allocates CM stor-
age space for the matrix vector multiplication, and places appropriate values in
variables required by the multiplication routines.

The setup routine provides two options that may improve performance significantly:

= If you set itrace = 1, the setup routine calculates and saves the trace corre-
sponding to the sparsity of the matrix for use in subsequent calls to the
multiplication routines. The setup routine also allocates the additional storage
space required for the trace.

= If you set irandom = 1, the setup routine returns random permutations of the
source and destination array element locations in where_is_x and where_is_y,
respectively. (If the source and destination arrays are the same variable, the
same permutation is applied to both arrays.) You must apply the permutation
indicated in where_is_x to the source arrays you supply in subsequent multi-
plication calls. The permutation indicated in where_is_y is applied to the
destination array by the multiplication routine. An example is provided in Sec-
tion 4.2.4.
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Multiplication Phase. Given a source CM array, x, and a sparse matrix represented as
a packed vector A, each multiplication routine computes the product of the sparse ma-
trix with x and returns the product in the CM array y.

Deallocation Phase. The deallocate_sparse_matvec_setup and deallocate_sparse_
vecmat_setup routines deallocate the memory that was allocated for a trace in a pre-
vious call to sparse_matvec_setup or sparse_vecmat_setup, respectively. Each setup
call in which itrace = 1 should be followed (after one or more associated calls to the
multiplication routines) by a deallocation call. In fact, it is good practice to issue a call
to the deallocation routine for every setup call. (If itrace was set to 0 in the setup call,
the deallocation call has no effect.)

NOTES

Argument Values. Do not alter the contents of trace, rows, cols, row_segments,
x_mask, y_mask, where_is_x, where_is_y, or itrace between a call to the setup routine
and a subsequent, associated call to a multiplication routine, for the following reasons:

®*  You must supply the multiplication routine with the values that the setup rou-
tine assigns to trace, rows, cols, row_segments, and itrace.

®*  You must supply the deallocation routine with the values that the setup routine
assigns to trace and itrace.

= If you set irandom to 1 when calling the setup routine, you must use the values
that the setup routine assigns to x_mask and where_is_x to permuté the ele-
ments of each x you supply in subsequent multiplication calls. (Refer to the
on-line sample code for an example.) The values that the setup routine assigns
to y_mask and where_is_y determine the permutation that the multiplication
routine will apply to the destination elements.

If the setup routine permutes the source array element locations (irandom = 1), it also
alters the contents of rows (and of cols, if itrace = 0) appropriately to reflect the permu-
tation so that the multiplication will occur correctly. (The multiplication routines use
the contents of rows to perform the communication for the multiplication. If you
supplied itrace = 0 to the setup routine, the multiplication routines also use the infor-
mation stored in cols.)

The product array y is the only argument updated by a call to one of the multiplication
routines.
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Overlapping Variables. For square matrices, you can use the same variable for x as
for y, and you can use the same variable for where_is_x as for where_is_y.

Numerical Stability. The arbitrary elementwise sparse matrix operations are stable.

Numerical Complexity. If the vector A has length n, the sparse matrix vector and
vector sparse matrix multiplication operations require approximately 2r floating-point
operations if A is real, or approximately 8z floating-point operations if A is complex.

If the vector A has length 7 and x has r columns, the sparse matrix dense matrix and
dense matrix sparse matrix operations require approximately 2nr floating-point opera-
tions if A is real, or 8nr floating-point operations if A is complex.

EXAMPLES

Sample CM Fortran code that uses the arbitrary elementwise sparse matrix routines
can be found on-line in the subdirectory

sparse-matrix-vector/cmf

of a CMSSL examples directory whose location is site-specific.
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Arbitrary Block Sparse Matrix Operations

This section introduces the arbitrary block sparse matrix operations. For detailed
information about the routines and their arguments, refer to the man page at the
end of this section.

The Arbitrary Block Sparse Matrix Routines

Given a block sparse matrix, a vector or dense matrix, and gathering and scatter-
ing pointer arrays, the arbitrary block sparse matrix routines compute the product
of the block sparse matrix with the vector or dense matrix. The following rou-
tines are provided:

block_sparse_setup Allocates processing element memory
for the operation.

block_sparse_matrix_vector_mult Multiplies a block sparse matrix by a
vector.

vector_block_sparse_matrix_mult Multiplies a vector by a block sparse
matrix.
block_sparse_mat_gen_mat_mult Multiplies a block sparse matrix by a

dense matrix,

gen_mat_block_sparse_mat_mult Multiplies a dense matrix by a block
sparse matrix.

deallocate_block_sparse_setup Deallocates memory allocated by
block_sparse_setup.

For information about setup and deallocation, refer to the Description section of
the man page following this section.

Block Representation, Gathering, and Scattering

Each block of data in a block sparse matrix is identified by a set of m row num-
bers and n column numbers. A block may overlap itself or other blocks. Blocks
need not be contiguous, and the rows and columns within a block need not be
contiguous.
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When you call the block sparse matrix routines, you must embed the blocks of
the block sparse matrix in a three-dimensional CM array, A, with declared extents
A(dim_1,dim_2, dim_3) and true extents A(m, n, p). The first two axes represent
the rows and columns of the blocks (which are assumed to be dense); the third
axis counts the blocks. Thus, each of p blocks is represented by an m X n dense
matrix within A. Rows and columns must be preserved in this representation; that
is, elements of a block that occur in the same row (or column) in the block sparse
matrix must occur in the same row (or column) when embedded in A.

The source array, x, and destination array, y, may be of rank 1 or 2 (with axes of
any lengths), may be the same variable, and are assumed to be dense. The ele-
ments to be multiplied with each block of A are gathered from the source array,
and the results of each block multiplication are scattered to form the destination
array. You must supply the block_sparse_setup routine with two arrays, x_
pointers and y_pointers, containing pointers for gathering elements from the
source array and scattering elements to the destination array, respectively.

The x_pointers and y_pointers arrays indicate the locations of the blocks within
the block sparse matrix. The location of element A(i, j, k) within the block sparse
matrix is given by (y_pointers(i, k), x_pointers(j, k)). (See Example 1 in Section
43.5.)

The elements of x_pointers identify the x elements that are to be multiplied by
the blocks of A; the elements of y_pointers identify the y locations to which the
resulting product elements are to be scattered.

For block_sparse_matrix_vector_mult, the gather operation can be expressed in
array notation as

forall(i = 1:n, j = 1:p)u(i,j) = x(x_pointers(i, j))
and the scatter operation can be expressed as

forall(i = 1:m, j=1:p) y(y_pointers(i,j)) = y(y_pointersQi, j)) + v(i, j)

where u(i,j) (for i = 1:n, j = 1:p) contains the source array elements to be multi-
plied with the jth block of A, and v(i,j) (for i = 1:m, j = 1:p) contains the resulting
product elements to be scattered to the destination array. For vector_
block_sparse_matrix_mult, the same definitions apply, but m and n are switched.
For block_sparse_mat_gen_mat_mult and gen_mat_block_sparse_mat_muit,
these definitions are extended by one dimension.

Detailed definitions of x_pointers and y_pointers are provided in the man page.
Section 4.3.5 presents examples of how gathering and scattering work in block
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sparse matrix vector multiplication and dense matrix block sparse matrix multi-
plication.

Saving the Trace

The block sparse matrix routines calculate an optimization, or trace, for the com-
munication pattern required by the multiplication. The trace depends on the
contents of the pointer array x_pointers. The trace can be computed by each mul-
tiplication routine. However, if you are performing more than one block sparse
matrix operation, and if the operations all use the same pointer array x_pointers,
you can reduce communication time and thus improve performance significantly
by having block_sparse_setup calculate the trace once and save it; you pass this
trace to subsequent multiplication routine calls. To activate this option, set itrace
= 1 when you call block_sparse_setup. If the contents of x_pointers change, you
must call block_sparse_setup again. (The contents of y_pointers must also re-
main constant for all multiplication calls following a single block_sparse_setup
call.)

The trade-off for the improved performance when you set itrace = 1 is that sav-
ing a trace requires a substantial amount of processing element memory. To free
this extra memory, you must call deallocate_block_sparse_setup after all the
block sparse matrix operations associated with one setup call have finished.

Random Permutation of Source and Destination Array
Element Locations

The block_sparse_setup argument irandom, if set to 1, activates an option that
uses an internal random permutation generator to return permutations of the
source and destination array element locations. These permutations affect all
subsequent block sparse multiplication calls associated with the setup call, as fol-
lows:

* Before calling the multiplication routines, you must permute your source
array elements, using the source array permutation returned by the setup
routine.

® The multiplication routine permutes the elements of the destination array
using the destination array permutation returned by the setup routine.
Thus, the destination array is returned in permuted form.
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Note that the source array permutation must be applied by your application,
while the destination array permutation is applied by the multiplication routine.

This feature involves a marginal preprocessing cost, but is extremely useful for
minimizing the routing conflicts that occur during the data motion phase of the
multiplication. In some cases, the permutations can reduce the communication
time and thus improve performance significantly. If you set irandom to 0, an
identity permutation is returned for both arrays.

The setup routine returns the source and destination array permutations in the
integer arrays where_is_x and where_is_y, respectively. If the source and des-
tination arrays have rank 2, each permutation moves elements within columns
only; each location remains in its original column.

Along with the source and destination arrays, you must supply the block sparse
matrix routines with two integer arguments, x_length and y_length, containing
the true extents of the first axes of x and y, respectively. That is, x_length contains
the number of active elements (for rank 1) or rows (for rank 2) in x, and y_length
contains the number of active elements (for rank 1) or rows (for rank 2) in y. In
the permuted source array that you provide to the multiplication routine, it is
possible that the active elements will no longer be confined to the first x_length
locations (or rows, for rank 2).

When you call the setup routine, you must also supply two logical arrays,
x_mask and y_mask, that have the same axis extents and layout directives as x
and y, respectively. The setup routine ignores the initial contents of the masks.
On return from the setup, the values of the masks reflect the permutations re-
turned in where_is_x and where_is_y. (Examples are provided in Section 4.3.5.)

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation 123



43.5

124

CMSSL Jor CM Fortran (CM-5 Edition)

NOTE

Product elements from the block multiplications are scattered
to the permuted y locations; thus, the y returned by each multi-
plication routine is the permuted destination array. Optionally,
you may use the information in y_mask and where_is_y to per-
mute the elements of y back to their original locations after the .
multiplication occurs. However, most applications do not re-
quire you to do this; for example, inner product computations
on destination vectors are invariant under random permutation.

For detailed definitions of the returned values of x_mask, y_mask, where_is_x,
and where_is_y, refer to the man page at the end of this section. The examples
below are based on the argument definitions in the man page.

For a discussion of random permutation of source vector element locations, see
references 4, 6, 7, and 8 listed in Section 4.5.

Examples
The following two examples show how gathering, scattering, and random per-
mutation of the source and destination arrays work in
® block sparse matrix vector multiplication
®  dense matrix block sparse matrix multiplication
These examples are based on the argument descriptions in the man page follow-

ing this section. They use letters instead of numbers for array element values in
some cases for clarity.

Example 1: Block Sparse Matrix Vector Multiplication

In this example, m = 5, n = 4, and p = 3. The coefficient block sparse matrix
contains three blocks, each of size (5 X 4). It is represented by the CM array A,
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which has declared extents (10, 10, 3) and true extents (5, 4, 3). The first (5 X 4)
elements of each dense matrix within A have the following values:

afkp uzej) otyj
bglyg vafk puzk
Ao D=lchmr | AG.2)=|wbgl | AG:3)=|qval
dins xchm rwbm
[ eJjo ¢ ydin | sxcn

The x argument is a vector with declared extent 8 and true extent x_length = 6.
The elements to be gathered from x are assumed to be, originally, in the first six
locations of the vector:

x=[x x» 3 x4 x5 x5 - -]

(The symbol - indicates a masked data element.) In this example, when you call
block_ sparse_setup, you set irandom = 1. The setup routine permutes the source
array element locations, assigns x_mask the values

@ xmask=[TFTFTTTT]
and assigns where_is_x the values

where_is x=[7 35618 4 2]

These values indicate that the source array element locations must be permuted
as follows:

x=[xs -x2- x3 x4 x1 %1

That is, you must use this template when permuting the elements of each x you
supply in subsequent multiplication calls associated with this setup call.

The x_pointers array must have declared extents (10 X 3) and true extents (n X
D) or (4 X 3). In this example, you supply the following values in the first (4 X
3) locations of x_pointers when you call block_sparse_setup:

141
521
263
4 32

‘ {@ L J

Xx_pointers =
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The x_pointers array determines the contents of the vectors of length n = 4 that
will be multiplied on the left by the blocks of A. Element (i, j) of x_pointers
contains the original location of the x element that is to be multiplied by the ith
column of the jth block of A.

Note that the values of the x_pointers elements are all less than or equal to
x_length = 6, since the elements to be gathered from x originally reside in the
first six locations of x.

Given that you supplied the above x_pointers values to block_sparse_setup, the
block_sparse_matrix_vector_mult routine will multiply the blocks A(;, :, 1), A(,
5, 2), and A(;, :,3) shown above by the following vectors, respectively:

- r - r b
X1 X4 X]
X
u 1) = | u2) = | 2 3 = | ™
x2 X6 X3
X4 i x3 x2

The results are the product vectors v(;, 1), v(;, 2), and v(;, 3). For example,

afkp |[x| [natxf+nk+u]
bgl g % x1b + xs5g + Xl + x4q
v, 1) = A(, 5, Du(, 1) = | ¢ hmr = | x3¢ + xsh +xpm + x4r
dins =2 x7d + xsi + xon + X48
| ejot | % | | x1e + 355 + %20 + X4t |

In this example, y has declared extent 8 and true extent y_length = 6, but is a
different variable than x (and therefore undergoes a different permutation than
x). The contents of v are scattered to form y using the pointers you supplied in
the y_pointers argument when you called block_sparse_setup.

The y_pointers array must have declared extents (10 X 3) and true extents (m X
p) or (5 X 3). Suppose you supplied the following values in the first (5 X 3) loca-
tions of y_pointers:
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351
4 23
y_pointers = 142
536
121

Element (i, j) of y_pointers contains the original location of the y element to
which element w(i,j) is to be scattered.

Note that the values of the y_pointers elements are all less than or equal to
y_length = 6, since the locations of y to receive scattered product elements are
originally the first six locations.

If you had set irandom to 0 when calling block_sparse_setup, the y_pointers val-
ues shown above would have caused block_sparse_matrix_vector_mult to assign
y the values

v(3,1) +v(5,1) + »(1,3) + ¥(5,3)
v2,2) +v(5,2) +v3,3)
w(1,1) +v(4.2) +v2,3)
v(2,1) +v(3,2)
v4,1) +v(1.2)

v(4,3)

Note that colliding values are added.

However, since you set irandom to 1 when calling block_sparse_setup, the con-
tents of v are sent, not to the y locations specified in y_pointers, but to the new
locations to which those locations are mapped during the random permutation.
If the setup routine assigned y_mask the values

ymask=[FTFTTTTT]
and assigned where_is_y the values
where_is .y =[8 6 74 52 1 3]

then block_sparse_matrix_vector_mult assigns y the values
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v(4,3)

v2,1) +v(3,2)

v(4,1) +v(1,2)

v2,2) +v(5,2) +v(3,3)
UL1) +v(4,2) + v2,3)
v(3,1) +v(5,1) +¥(1,3) +v(5,3)

Recall that the location of element A(i, j, k) within the block sparse matrix is
given by (y_pointers(i, k), x_pointers(j, k)). Applying this formula to the ele-
ments A(:, :, 1), we see that this block is positioned as shown below in the
original block sparse matrix:

1 2 3 435

it

cemo r1thj

z (
3| a k pf
4 b 1 q8
5] d n s i

This example illustrates the fact that blocks can be self-overlapping and can have
non-contiguous rows and columns.

Example 2: Dense Matrix Block Sparse Matrix Multiplication

In this example, m = 4, n = 3, and p = 2. The coefficient block sparse matrix
contains two blocks, each of size (4 X 3), and is embedded in the CM array A. A
has declared extents (10, 10, 2) and true extents (4, 3, 2). The first (4 x 3) ele-
ments of each block have the following values:
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ae.i mq u
bf] » nry
A(:r:31)= c g k A(:,:,2)= 0Ss W
dhl ptx

The x argument is a matrix with declared extents (8 X 8) and true extents (6 X 8);
thus, x_length = 6. The elements to be gathered from x are assumed to be, origi-
nally, in the first (6 X 8) locations of the matrix:

X]] X12 X13 X]4 XI5 X]6 X]7 XI8
X1 X2 X23 X24 Xp5 X26 X27 X28
X3] X32 X33 X34 X35 X36 X37 X38
x = X1 X2 X43 X4 X45 X46 X47 X48
X51 X52 X53 X54 X55 X56 X57 X58
X6l X2 %63 Xe4 %65 %66 X67 %68
) 00000O0UOUO OO

{ 0000 O0UOTO OO

In this example, when you call block_sparse_setup, you set irandom = 1. The
setup routine permutes the source array element locations within each column,
assigns x_mask the values

TTFTTFT)]
TTTTTTT
TFTTTTF
TTTFETF
TTTFTTT
FTTTTTT
FFFTFFT
T

T
T
F
x_mask = T
T
F
T
_T TTTTTT-
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and assigns where_is_x the values

8
4
5
where_is_x = 12
3
6
7

\""wUl.pr\N

5
8
3
2
6
1
7
4

e I Y - S
W AN O 0 g

7
6
2
1
3
8
5
4

D W X b oo N
(ISR A S Y

These values indicate that the source array element locations must be permuted
as follows:

x31 x52 x13 0 x45 %66 O x18
X1 X2 X43 X14 X35 X46 X27 %48
0 x2 0 x4 x55 x356 %17 O
x = xsp X2 %3 %4 0 0 x57 0
X1 x32 x63 %54 0 Xx16 X47 Xs8
0 0 =x33 x4 X25 X56 X67 X68
%1 0 0 0 x;5 0 O x5

X41 X12 X53 X34 X65 X26 X37 X38
That is, you must use this template when permuting the elements of each x you
supply in subsequent multiplication calls associated with this setup call.

The x_pointers array must have declared extents (10 x 2) and true extents (m X
p) or (4 X 2). In this example, you supply the following values in the first (4 X
2) locations of x_pointers when you call block_sparse_setup:

o -

Xx_pointers =
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The x_pointers array determines the contents of the matrices of extent (n X m)
= (3 X 4) that will be multiplied on the right by the blocks of A. If element (i, j)
of x_pointers contains the value %, then the gen_mat_block_sparse_mat_muit
routine will multiply the ith row of the jth block of A by x((where_is_x(k, 1),),
when computing the /th row of the product.

Note that the values of the x_pointers elements are all less than or equal to
x_length = 6, since the elements to be gathered from x originally reside in the
first six rows of x.

Given that you supplied the above x_pointers values to block_sparse_setup, the
gen_mat_block_sparse_mat_mult routine will multiply the blocks A(;, :, 1) and
A(:, :,2) shown above by the following matrices, respectively:

X21 X1 X61 %31 x31 Xs1 X41 X1
us s 1) = | %22 %12 X6z %32 uz,:,2) = | %2 %2 X2 X2
X23 X3 X63 X33 X33 X53 X43 X3

The results are the product matrices v(;, :, 1) and v(;, :, 2). For example,

X2] XI1 X61 X31 aei
X22 X12 X62 X32 b7
v(, 1) = u(, 1) AG 5 1) = cgk
X23 X13 X63 X33 dhl

In this example, y has declared extents (8 X 8) and true extents (6 X 8); thus,
y_length = 6. Also, y is defined to be the same variable as x, and therefore under-
goes the same random permutation as x. The contents of v are scattered to form
y using the pointers you supplied in the y_pointers argument when you called
block_sparse_setup.

The y_pointers array must have declared extents (10 X 2) and true extents (n X
p) ot (3 X 2). Suppose you supplied the following values in the first (3 x 2) loca-
tions of y_pointers:

2
y_pointers = 13
2
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If element (i, j) of y_pointers contains the value k, then element v(i, [, j) is scat-
tered to location y(where_is_y((k, I),]).

Note that the values of the y_pointers elements are all less than or equal to
y_length = 6, since the locations of y to receive scattered product elements are
originally the first six rows of y.

If you had set irandom to 0 when calling block_sparse_setup, the y_pointers val-
ues shown above would have caused gen_mat_block_sparse_mat_mult to scatter
the contents of v to the first (m X n) or (4 X 3) locations of y as follows:

[ v V221 V231 00000 |
Vit V32 viz2 tviaz vis2 +viz2 00 0 0 0
Viptvarz viar tvazz vizrtwezz 00 0 0 0
- 0 0 0 00000
ye 0 0 0 00000
V311 V321 V331 00000
0 0 0 000O00O0

0 0 0 00000 |

Note that colliding values are added; and that since, in this example, each matrix

v(:, :, /) has dimensions (3 X 3), only the first three columns of y receive scattered
product elements.

However, since you set irandom to 1 when calling block_sparse_setup, the con-
tents of v are sent, not to the y locations specified in y_pointers, but to the new
locations to which those locations were mapped during the random permutation.
Since the setup routine applied the same permutation to the source array and des-
tination array element locations, it assigned y_mask the values

FTTFT)]
TTTT
TTTF

FFTEF
FTTT
TTTT
T FFT
TTTT_

y_mask =

e R T I L I
e T e B B I I
G B I I B
e I I I I I
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where_is_y =

vip+viz 0 V231 00000
V211 0 0 00000
0 V321 0 00000
y - 0 Viz+vs22 Viz+vizz 00000
Viz +v312 viar tvazz V33l 00000
0 0 vizztvwizz 00 000
V311 0 0 00000
0 V221 0 00000

AN W 1 B oo e o N
NN W om0 A
Ll B G T -

N = W W a0 N

and assigned where_is_y the values

A Q= o0 W o0 W
N = O A o0 W
W A O W 0 00 g

7
6
2
1
3
8
5
4

Therefore, gen_mat_block_sparse_mat_mult assigns y the values
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Arbitrary Block Sparse Matrix Operations

Given a block sparse matrix, a vector or dense matrix, and gathering and scattering pointer
arrays, the routines described below compute the product of the block sparse matrix with
the vector or dense matrix.

SYNTAX

block_sparse_setup (x_mask, y_mask, where_is_x, where_is_y, x_pointers, y_pointers,
m, n, p, x_length, y_length, irandom, itrace, trace, trace_mask,
setup, ier)

block_sparse_matrix_vector_mult (y, A, x, x_pointers, y_pointers, y_mask, m, n, D
x_length, y_length, setup, trace, trace_mask, ier)

vector_block_sparse_matrix_mult (y, A, x, x_pointers, y_pointers, y_mask, m, n, p,
x_length, y_length, setup, trace, trace_mask, ier)

block_sparse_mat_gen_mat_mult (y, A, x, x_pointers, y_pointers, y_mask, m, n, p,
x_length, y_length, setup, trace, trace_mask, ier)

gen_mat_block_sparse_mat_mult (y, A, x, x_pointers, y_pointers, y_mask, m, n, p,
x_length, y_length, setup, trace, trace_mask, ier)

deallocate_block_sparse_setup (trace, trace_mask)

ARGUMENTS

The following definitions assume that the coefficient block sparse matrix is embedded
in a three-dimensional CM array, A; that A is declared with extents (dim_l1, dim_2,
dim_3); that the portion of A containing valid data has extents (m, n, p); and that the
pointer arrays x_pointers and y_pointers are one-based.

y CM array of type real or complex. Destination array. May be the
same variable as x. The rank of y is 1 for block_sparse_matrix_
vector_mult and block_sparse_vector_matrix_mult, and 2 for
block_sparse_mat_gen_mat_mult and gen_mat_block_sparse_
mat_mult. These multiplication routines assign values to y by
using the pointers supplied in y_pointers to scatter elements from
the block products. If you set irandom = 1 when calling
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block_sparse_setup, the product elements are scattered to the
permuted locations of y. (The permutation is given by the values
of where_is_y assigned by the setup routine.)

Any initial values of y are overwritten by the multiplication
routines. If the pointer array y_pointers causes more than one
block product element to update the same y element during the
scatter operation, the colliding values are added.

CM array of rank 3 and the same data type and precision as y.
Represents the block sparse matrix. The first two axes have true
extents m and n, respectively, and count the rows and columns of
the dense blocks. The third axis has true extent p and counts the
blocks. Thus, A contains p dense blocks, each of size m X n. The
location of element A(i, j, k) within the block sparse matrix is
given by (y_pointers(i, k), x_pointers(j, k)).

CM array of the same data type and precision as y. Source array.
Assumed to be dense. May be the same variable as y. The rank of
x is 1 for block_sparse_matrix_vector_mult and vector_block_
sparse_matrix_mult, and 2 for block_sparse_mat_gen_mat_muit
and gen_mat_block_sparse_mat_mult. If you set irandom = 1
when calling block_sparse_setup, then before calling any of the
multiplication routines, you must permute the elements of x using
the permutation returned in where_is_x.

Logical CM array. Mask for the source array x. Must have the
same axis extents and layout directives as x (rank 1 or 2). The
initial values are ignored. On return from block_sparse_setup,
x_mask has the following values:

®  If irandom = 0 and x has rank 1, x_mask(l:x_length) =
Arue.; all other elements of x_mask are .false..

" Ifirandom = 0and x has rank 2, then within each column
of x_mask, x_mask(1:x_length, I) = true.; all other ele-
ments of the column are .false..

»= If irandom = 1 and x has rank 1, then
x_mask(where_is_x(1:x_length)) = .true.; all other ele-
ments of x_mask are .false..
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=  Ifirandom = 1 and x has rank 2, then within each column
of x_mask, x_mask(where_is_x(k,l), I) = .true. for k =
1:x_length; all other elements of the column are .faise..

Logical CM array. Mask for the destination array y. Must have the
same axis extents and layout directives as y (rank 1 or 2). The
initial values that you supply to block_sparse_ setup are ignored.
On return from block_sparse_setup, y_mask has the following
values:

®  If irandom = O and y has rank 1, y_mask (1:y_length) =
true.; all other elements of y_mask are .false..

= If irandom = 0 and y has rank 2, then within each column
of y_mask, y_mask(1:y_length, I) = true. and all other
elements of the column are .false..

* If irandom = 1 and y has rank 1, then
y_mask(where_is_y(1:y_length)) = true.; all other ele-
ments of y_mask are .false..

s If irandom = 1 and y has rank 2, then within each column
of y_mask, y_mask(where_is_y (k,), I)) = .true. for k =
1:y_length; all other elements of the column are .false..

Do not modify y_mask between the setup call and the associated
multiplication call(s). When you call one of the multiplication
routines, you must supply the values assigned to y_mask by
block_sparse_setup.

Integer CM array. Must have the same axis extents and layout
directives as x (rank 1 or 2). The initial values are ignored. On
return from block_sparse_setup, where_is_x has the following
values:

® If irandom = 0, where_is_x(k) (for rank 1) or where_
is_x(k,]) (for rank 2) is simply k.

®» If irandom = 1 and x has rank 1, where_is_x(k) is the lo-
cation to which the kth source array location must be

mapped.

® If irandom = 1 and x has rank 2, where_is_x(k,]) is the
row number to which location (k, [) of the source array
must be mapped.
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where_is_y Integer CM array. Must have the same axis extents and layout
directives as y (rank 1 or 2). The initial values are ignored. On
return from block_sparse_setup, where_is_y has the following
values:

® If irandom = 0, where_is_y(k) (for rank 1) or where_
is_y(k,) (for rank 2) is simply k.

» If irandom = 1 and y has rank 1, where_is_x(k) is the lo-
cation to which the kth destination array location will be
mapped by the multiplication routine.

® If irandom = 1 and y has rank 2, where_is_x(k,l) is the
row number to which location (k, I) of the destination
array will be mapped by the multiplication routine.

x_pointers Integer CM array of rank 2. Must be one-based. The elements of
x_pointers identify the original locations of the x elements that
are to be gathered into vectors (if x has rank 1) or matrices (if x
has rank 2) to be multiplied by the blocks of A.

Before calling block_sparse_setup, use the following guidelines
to create x_pointers:

= If you are planning to use block_sparse_matrix_vector_
mult or block_sparse_mat_gen_mat_mult (in which A is
the left-hand operand), declare x_pointers with extents
(dim_2, dim_3) and place valid data in the subarray
whose axes have extents » and p.

= If you are planning to use vector_block_sparse_matrix_
mult or gen_mat_block_sparse_mat_mult (in which A is
the right-hand operand), declare x_pointers with extents
(dim_1, dim_3) and place valid data in the subarray
whose axes have extents m and p.

®  Assign the elements of x_pointers values less than or
equal to x_length.

If x has rank 1 and x_pointers(i,j) = k, then

® block_sparse_matrix_vector_mult multiplies the ith col-
umn of the jth block of A by x(where_is_x(k)).
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®  vector_block_sparse_matrix_mult multiplies the ith row of
the jth block of A by x(where_is_x(k)).

If x has rank 2 and x_pointers(i,j) = k, then

*  block_sparse_mat_gen_mat_mult multiplies the ith col-
umn of the jth block of A by x(where_is_x(k,1),l) when
computing the /th column of the block product.

* gen_mat_block_sparse_mat_mult multiplies the ith row of
the jth block of A by x(where_is_x (k),]) when comput-
ing the Ith row of the block product.

When defining x_pointers, refer to the rules for using the same
variable for two arguments, presented in the description below.

The x_pointers values you supply to the block_sparse_setup
routine should refer to the original (unpermuted) locations of x. If
you set irandom = 1, block_sparse_setup modifies the values of
x_pointers so that the gathering operation occurs correctly. Do not
modify the contents of x_pointers between the setup call and the
associated multiplication call(s). When you call one of the
multiplication routines, you must supply the values assigned to
x_pointers by block_sparse_setup.

Integer CM array of rank 2. Must be one-based. The elements of
y_pointers identify the original (unpermuted) locations of the y
elements that are to receive scattered product elements.

Before calling block_sparse_setup, use the following guidelines
to create y_pointers:

= If you are planning to use block_sparse_matrix_vector_
mult or block_sparse_mat_gen_mat_mult (in which A is
the left-hand operand), declare y_pointers with extents
(dim_1, dim_3) and place valid data in the subarray
whose axes have extents m and p.

= If you are planning to use gen_mat_block_sparse_mat_
mult or vector_block_sparse_matrix_mult (in which A is
the right-hand operand), declare y_pointers with extents
(dim_2, dim_3) and place valid data in the subarray
whose axes have extents # and p.
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®  Assign the elements of y_pointers values less than or
equal to y_length.

The values of y_pointers determine the scattering pattern as
follows:

* Ifyhasrank 1 and y_pointers(i,j) = k, then the ith element
from the jth block product is scattered to

y(where_is_y(k)).

* Ify has rank 2 and y_pointers(i,j) = k, then element (i, [)
from the jth block product is scattered to
y(where_is_y(k,1),]).

When defining y_pointers, refer to the rules for using the same
variable for two arguments, presented in the description below.

The y_pointers values you supply to the block_sparse_setup
routine should refer to the original locations of y. If you set
irandom = 1, block_sparse_setup modifies the values of
y_pointers so that the scattering operation occurs correctly. Do
not modify the contents of y_pointers between the setup call and
the associated multiplication call(s). When you call the
multiplication routines, you must supply the values that
block_sparse_setup assigned to y_pointers.

Scalar integer variable. The true extent of the first axis of A. Also
the true extent of the first axis of y_pointers (for operations in
which A is the left-hand operand) or of x_pointers (for operations
in which A is the right-hand operand).

Scalar integer variable. The true extent of the second axis of A.
Also the true extent of the first axis of x_pointers (for operations
in which A is the left-hand operand) or of y_pointers (for
operations in which A is the right-hand operand).

Scalar integer variable. The true extent of the third axis of A, and
the true extent of the second axis of x_pointers and y_pointers.

Scalar integer variable. The true extent of the first axis of the
source array x. Prior to permuting the data elements of x, you
must arrange your data so that the first x_length locations (for

rank 1) or rows (for rank 2) of x contain the elements to be
gathered.
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irandom

itrace
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trace_mask

setup

ier
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Scalar integer variable. The true extent of the first axis of the
destination array y. The multiplication routines assume that the
original, unpermuted locations of y that are to receive scattered
product elements are first y_length locations (for rank 1) or first
y_length rows (for rank 2).

Scalar integer variable. Must contain 0 or 1. Setting irandom to 1
causes the setup routine to return random permutations of the
source and destination array element locations. If irandom is 0,
identity permutations are returned.

Scalar integer variable. Must contain O or 1. Set itrace to 1 to
calculate and save an optimization, or trace, for the
communication pattern corresponding to the contents of x_
pointers and y_pointers. Set itrace to 0 to have the multiplication
routine calculate the trace.

Scalar integer variable. Internal variable. The initial value you
supply when you call block_sparse_setup is ignored. Upon return
from block_sparse_setup, frace contains a value that you must
supply when you make associated calls to the multiplication
routines and to deallocate_block_sparse_setup.

Scalar integer variable. Internal variable. The initial value you
supply when you call block_sparse_setup is ignored. Upon return
from block_sparse_setup, trace_mask contains a value that you
must supply when you make associated calls to the multiplication
routines and to deallocate_block_sparse_setup.

Scalar integer variable. Internal variable. The initial value you
supply when you call block_sparse_setup is ignored. Upon return
from block_sparse_setup, setup contains a value that you must
supply when you make associated calls to the multiplication
routines.

Scalar integer variable. Upon return from block_sparse_setup,
contains one of the following codes:

0  Successful return.

-1  The supplied arguments had mismatched shapes or
did not follow the rules for using the same
variable for two arguments, presented in the
description below.
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Upon return from one of the multiplication routines, contains one
of the following codes:

0  Successful return.

-1  The supplied arguments had mismatched shapes or
did not follow the rules for using the same
variable for two arguments, presented in the
description below.

DESCRIPTION

Setup and Deallocation. Follow these steps to perform one multiplication operation
(or multiple operations, sequentially):

1. Call block_sparse_setup.

2. Call one or more of the multiplication routines listed below. (In the formulas
below, x and y denote vectors while X and Y denote matrices. However,
lowercase letters are used for both cases everywhere else in this text.)

‘; ’ block_sparse_matrix_vector_mult y = Ax
block sparse matrix X vector

vector_block_sparse_matrix_muit  yT = xT4
vector X block sparse matrix

block_sparse_mat_gen_mat_mult Y =AX
block sparse matrix X dense matrix

gen_mat_block_sparse_mat_mult YT = XTA
dense matrix X block sparse matrix

To compute more than one product using the same gathering and scattering
pointer arrays, follow one call to block_sparse_setup with multiple calls to the
multiplication routines. If the pointer arrays change, start with Step 1 again.

3. After all multiplication calls associated with the same block_sparse_setup call,
call deallocate_block_sparse_setup to deallocate the storage space required by
the setup routine.

More than one setup may be active at a time. That is, you may call the setup routine
more than once without calling the deallocation routine.
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Setup Phase. Given the sparsity of the block sparse matrix A, the gathering and scat-
tering pointers (x_pointers and y_pointers) to be used in subsequent multiplications,
and the shapes of the source array x and destination array y, block_sparse_setup initial-
izes masks and location vectors for x and y and assigns appropriate values to internal
variables required by the multiplication routines. The setup routine modifies the con-
tents of x_pointers and y_pointers.

The setup routine provides two options that may improve performance significantly:

= If you set itrace = 1, block_sparse_setup saves the trace associated with
x_pointers and y_pointers for use in subsequent calls to the multiplication
routines. The setup routine also allocates the additional storage space required
for the trace.

= If you set irandom = 1, block_sparse_setup returns random permutations of
the source and destination array element locations in where_is_x and
where_is_y, respectively, and returns the new masks for the source and desti-
nation arrays in x_mask and y_mask, respectively. (If the source and
destination arrays are the same variable, the same permutation is applied to
both arrays.) You must apply the permutation indicated in where_is_x to the
source arrays you supply in subsequent multiplication calls. The permutation
indicated in where_is_y is applied to the destination array by the multiplica-
tion routine.

Multiplication Phase. Given a sparse matrix, A, represented in block form, and source
and destination arrays x and y, respectively, the multiplication routines compute the
product of A with x and return the product in y.

Deallocation Phase. The deallocate_block_sparse_setup routine deallocates the stor-
age space that was allocated for a trace in a previous call to block_sparse_setup. Each
block_sparse_setup call in which itrace = 1 should be followed (after one or more as-
sociated multiplication routine calls) by a deallocate_block_sparse_setup call. In fact,
it is good practice to issue a call to the deallocate_block_sparse_setup routine for
every call to block_sparse_setup. (If itrace was set to 0 in the block_sparse_setup call,
deallocate_block_sparse_setup has no effect.)

Using the Same Variable for Two Arguments. Several possibilities exist for using
the same variable for two arguments. However, the current release supports the follow-
ing two cases only:

® Each argument uses a different variable.
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® x_mask and y_mask are the same variable. In this case, where_is_x and
where_is_y must be the same variable, and x_pointers and y_pointers must be
the same variable. If you do not follow this rule, an error code (ier = -1) is
returned.

NOTES

Argument Values. The internal variables trace, trace_mask, and setup are required for
communicating information between the setup phase and the multiplication phase. The
application must not modify the contents of these variables. Similarly, after a call to the
setup routine, the application should not modify the contents of pointers x_pointers
and y_pointers.

The destination array y is the only argument updated by the multiplication routines.

Use of Setup Routine. The setup routine must be called whenever the sparsity of the
sparse system, represented by pointer arrays x_pointers and y_pointers, changes. For
performance reasons, the cost of the setup phase should be amortized over several mul-
tiplications.

Use of Deallocation Routine. If itrace was set to 1 in the block_sparse_setup call, be
sure to call deallocate_block_sparse_setup to deallocate storage space after all of the
block sparse matrix operations associated with the setup call have finished.

Numerical Stability. The block sparse matrix operations are stable.

Numerical Complexity. Each block sparse matrix operation requires approximately
2mnp floating-point operations for real operands, or 8mnp floating-point operations for
complex operands.

Performance Hints. Performance is best when the blocks are local to a processing
element. You may meet this condition by using the :serial layout directive on axes 1
and 2, by using a very high weight on these axes, or by using the detailed layout axis
descriptors, :procs and :blocks. Typical examples are as follows:

CMF$LAYOUT A(:SERIAL, :SERIAL, :NEWS)
CMFS$SLAYOUT SRC_POINTERS (:SERIAL, :NEWS)
CMF$SLAYOUT DEST_POINTERS (:SERIAL, :NEWS)
REAL A(24, 24, 16000)
INTEGER SRC_POINTERS (24, 16000)
INTEGER DEST_POINTERS (24, 16000)
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CMFSLAYOUT A(:SERIAL, 100000:NEWS, :NEWS)
CMF$LAYOUT SRC_POINTERS (100000:NEWS, :NEWS)
CMF$LAYOUT DEST_POINTERS (100000:NEWS, :NEWS)

REAL A(81, 81, 8000)

INTEGER SRC_POINTERS (81, 8000)

INTEGER DEST_POINTERS (81, 8000)

EXAMPLES

Sample CM Fortran code that uses the block sparse matrix operations can be found
on-line in the subdirectory

block-sparse/cmf/

of a CMSSL examples directory whose location is site-specific.
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4.4

4.4.1

4.4.2

Grid Sparse Matrix Operations

This section introduces the grid sparse matrix operations. For detailed
information about the routines and their arguments, refer to the man page at the
end of this section.

The Grid Sparse Matrix Routines

Given coefficient arrays, an operand array, and a product array on a 1-, 2-, or
3-dimensional grid, the grid sparse matrix routines compute the product of the
grid sparse matrix represented by the coefficient arrays with the vector or dense
matrix represented by the operand array. The following routines are provided:

grid_sparse_setup Sets up the multiplication operation and
allocates the necessary partition manager
workspace.

grid_sparse_matrix_vector_mult = Multiplies a grid sparse matrix by a
vector.

vector_grid_sparse_matrix_mult  Multiplies a vector by a grid sparse
matrix.

grid_sparse_mat_gen_mat_mult  Multiplies a grid sparse matrix by a

dense matrix.
gen_mat_grid_sparse_mat_muit  Multiplies a dense matrix by a grid
sparse matrix.
deallocate_grid_sparse_setup Deallocates the partition manager
' workspace allocated by grid_sparse_
setup.

For information about setup and deallocation, refer to the Description section of
the man page at the end of this section.

Grid Sparse Matrix Representation

The grid sparse matrix routines operate on data that is arranged on a grid. Coeffi-
cient matrix elements residing at each grid point P are multiplied by vector or
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matrix elements residing at point P and its nearest-neighbor points. The result is
placed in product vector or matrix elements residing at point P. This section de-
scribes these grid operations in detail. Section 4.4.3 describes the matrix
representation of these operations. The matrix representation is provided for in-

formational purposes only; applications must use the grid representation
described in this section.

Grid Representation
The grid sparse matrix routines assume that you are working with the arrays
listed below, and that these arrays are arranged in a 1-, 2-, or 3-dimensional grid.
= Three, five, or seven coefficent arrays:
= Three arrays, a, b, and c, if the grid is 1-dimensional.
= Five arrays, a, b, ¢, d, and e, if the grid is 2-dimensional.
= Seven arrays, a, b, ¢, d, e, f, and g, if the grid is 3-dimensional.
® An operand array, x.
= A product array, y.

Each grid point is associated with either an element or a dense block of each
array.

For example, Figure 6 shows a 1-dimensional grid with 7 points. Each grid point
is associated with one element of each array. In this example, g, b, ¢, x, and y all
have rank 1.

° ° ° ° ° ° )

a1  a a3 ay as ag a7
by b, b3 by bs bg by
C1 C2 C3 C4 Cs C6 Cc7
X1 X2 X3 X4 X5 X5 X7
yr  ¥2 Y3 Y4 Ys Yo Y1

Figure 6. 1-dimensional grid; each grid point is associated with
one element of each array.
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Figure 7 shows a 2-dimensional grid with dimensions (3 X 3). Again, each grid
point is associated with one element of each array. In this example, @, b, ¢, d, e,
x, and y all have rank 2. The axes of each array correspond to the axes of the grid.

e N
~ ™~

a33, bas, 33, d33, €33, X33, Y33

ai by, e, di, €11, X1, ynn®  © @
“

~"

Figure 7. 2-dimensional grid; each grid point is associated
with one element of each array.

In contrast, Figure 8 shows a 1-dimensional, 4-point grid, each point of which
is associated with a dense block of each array. Specifically, each grid point is
associated with a (2 X 2) block of each of the coefficient arrays a, b, and ¢; a
length-2 block of x; and a length-2 block of y. In this example, the arrays a, b,
and ¢ have rank 3; the first two axes define the block and the third axis corre-
sponds to the grid. The arrays x and y have rank 2; the first axis defines the block
(which is a vector) and the second corresponds to the grid. In CM Fortran, you
would declare these arrays as a(2, 2, 4), b(2, 2, 4), ¢(2, 2, 4), x(2, 4), and y(2, 4).
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[ J [ ] [ ] ®
a1y 4121 2112 a122 aji3 a3 a1i4 2124
az11 a21 a212 a2 a213 4223 214 a224
b1 b2 buz2 b2z byjz bz biis b
ba1r baa1  b212 b2z bpj3 oz boig baxg
€111 €121 C112 €122 €113 €123 C114 €124
C211 C221 €212 C222 C213 €223 C214 €224
X11 X12 X13 X14
X21 x22 X23 X24
yu Y12 Y13 Y4
y21 y22 y23 Y24

Figure 8. 1-dimensional grid; 2-dimensional coefficient blocks,
1-dimensional operand and product blocks.

Finally, Figure 9 shows the same 1-dimensional grid of length 4, but this time
each grid point is associated with a (2 X 2) block of each of the coefficient arrays
a, b, and c; a (2 X 2) block of x; and a (2 X 2) block of y. In this example, the
arrays a, b, ¢, x, and y all have rank 3. In CM Fortran, you would declare the
arrays as follows:

real, array (2,2,4): a, b, ¢, x, y
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ajl1 2121 2112 2122 apj3 a3 a114 a124
a211 a221  a212 2222  az13 aze3 4214 4224

b bi2i bz bz byyz byps bia b
ba11 baa1  bo12 baoz  byi3 byys  baig baxg

Ci1 €121 €112 €122 €113 €123 C114 C124
€211 €221 €212 €222 €213 €223 €214 €224

X111 X121 X112 X122 X113 X123 X114 X124
X211 X221 X212 X222 X213 X223 X214 X224

Y Y121 Y112 Y122 yu3 Yz Y114 Y124
Y211 Y221 Y212 Y222 Y213 Y223 Y214 Y224

Figure 9. 1-dimensional grid; 2-dimensional coefficient,
operand and product blocks.

Grid Axes, Block Axes, and Instance Axes

As the examples in Figure 6 through Figure 9 illustrate, each of the arrays a, b,
cl, d el, £, gll, x, and y has one, two, or three axes corresponding to the grid.
These axes are called the grid axes.

In addition, each of the arrays may have one or two axes that define the dense
block associated with each grid point. These axes are called the block axes.

Finally, each array may have multiple instances, defined by any number of in-
stance axes. (For a discussion of instance axes, refer to Chapter 1.)

Grid Multiplication

The grid sparse matrix routines multiply the elements of the arrays a, b, c[, d, e[,
J; g1] by the elements of x and place the results in y. To compute this product, the
routines multiply the elements or blocks of a, b, c[, d, €|, £, g]] at a given grid
point by the elements of x that reside at the same grid point and its nearest-neigh-
bor grid points.
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Figure 10 illustrates this process for a 1-dimensional grid. Each point (except the
boundary points) has two nearest neighbors. At each point P,

= The block of a is multiplied by the block of x at point P-1.
= The block of b is multiplied by the block of x at point P.
= The block of ¢ is multiplied by the block of x at point P+1.

The sum of the results is placed in the block of y at point P. The boundary condi-
tions are under user control. For example, in Figure 10, elements aj11, @121, @211,
a1, €114, 124 €214, and c274 would normally be 0; but you may wish to supply
other values, depending on your application.

3 4
°

aj13 a;23 2114 2124
a3 a3 2214 a224

bj13 bizz  biia bis
ba13 bz b21a by

C113 €123 €114 C124
C213 €223 €214 €224

X14
X24

Figure 10. Grid multiplication at a non-boundary point.

Functionally, the routines perform a circular shift (CSHIFT in CM Fortran) of the
array x. Thus, the high boundary point takes the place of the missing nearest
neighbor to the low boundary point, as shown in Figure 11.
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4.4.3

1 2 3 4
°

a1 a121
az11 a2

big biar) biz bizz  byjz by biia biog
by bagy/ b2z baza  bpy3 bppa\  baia bag

C112 €122 €113 €123
€212 €222 €213 €223
X
X X13 X14
X23 X24

yu Y12 Y13 Y14
Y21 Y22 y23 Y24

a1z aj

aji3 a123 3114 3124
a212 222 3

a214 224

C114 €124
214 €224

Figure 11. Grid multiplication at a boundary point.

In a 2-dimensional grid, each non-boundary point has four nearest neighbors. An
element of ¢ is multiplied by the element of x at the same point; elements of a,
b, d, and e are multiplied by the elements of x at the nearest neighbors.

Similarly, in a 3-dimensional grid, each non-boundary point has six nearest
neighbors. An element of d is multiplied by the element of x at the same point;
elements of a, b, ¢, ¢, and f are multiplied by the elements of x at the nearest
neighbors.

The man page at the end of this section includes formulas for grid sparse matrix
multiplication; rules for grid, block, and instance axes; and performance hints.

Matrix Representation of the Grid Sparse Matrix Operations

This section describes the grid sparse matrix operations in terms of matrices.
This matrix representation is provided for informational purposes only; applica-
tions must use the grid representation described in Section 4.4.2.

A grid sparse matrix is a sparse matrix that represents data originating on a grid.
The non-zero elements of the matrix contain the data from the grid; the positions
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of the non-zero elements reflect the numbering scheme used to order the points
of the grid.

When the grid multiplication described above is represented in matrix form, the
elements of the arrays a, b, c[, d, e[, £, g]] form a grid sparse matrix A, and the
elements of x form a vector or matrix. The routines compute the product Ax or
xTA and place the results in the vector or matrix y.

The elements of a, b, ¢], d, e[, f, g]] associated with one grid point appear on the
same row of A; the positions of these non-zero elements in the row ensure that
each element is multiplied by the correct element of x.

The exact locations of non-zero elements in the grid sparse matrix depend on the
numbering scheme used to label the points of the original grid. Typical labeling
schemes may result in the patterns shown in Figure 12 (tridiagonal, 5-diagonal,
and 7-diagonal matrices for 1-, 2-, and 3-dimensional grids, respectively). The
dots indicate the positions of non-zero elements or dense blocks.
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Grid sparse matrix representing a 1-dimensional
grid of length 9 for one labeling scheme.

Grid sparse matrix representing a 3 x 3 grid for one
labeling scheme.

Grid sparse matrix representing a 2 x 2x 2 grid for
one labeling scheme.
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Figure 12. Matrix forms for 1-, 2-, and 3-dimensional

grids using a common numbering scheme.
Dots indicate the positions of non-zero elements or dense blocks.
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For grid sparse matrix representations with the labeling schemes shown in
Figure 12, each coefficient array a, b, c[, d, e[, f, g]] consists of the elements of
a diagonal, as shown in Figure 13.

\e
d
¢ e \ ftg

- L a bc_ - a de

Figure 13. Coefficient array representation of common forms of grid sparse matrices.

Note that some of the elements of a, b, c[, d, e[, £, g]] associated with boundary
points on the grid do not appear in these matrices. The arrays you supply must
include these boundary elements; be sure to set the boundary values appropriate-
ly for your application.

Figure 14 shows the matrix representations of the grid sparse matrix operations.
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Figure 14. The grid sparse matrix operations in matrix form.
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The grid_sparse_matrix_vector_mult and vector_grid_sparse_matrix_muit rou-
tines support the following possibilities:

= Each dot of the grid sparse matrix is a single element; each dot of the vec-
tor is a single element.

= Each dot of the grid sparse matrix is a p X g block; each dot of the vector
is a vector of length g (for grid_sparse_matrix_vector_muit) or length p
(for vector_grid_sparse_matrix_mult).

The grid_sparse_mat_gen_mat_mult and gen_mat_grid_sparse_mat_mult routines
support the following possibility:

= Each dot of the grid sparse matrix is a p X g block. For
grid_sparse_mat_gen_mat_ mult, each dot of the dense matrix xisag X r
block and each dot of the dense matrix y is an p X r block. For
gen_mat_grid_sparse_mat_mult, each dot of the dense matrix x is an r X
p block and each dot of the dense matrix y is an r X g block.

Each operation can occur in multiple instances.
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Grid Sparse Matrix Operations

Given coefficient arrays, an operand array, and a product array on a 1-, 2-, or 3-dimension-
al grid, the routines described below compute the product of the grid sparse matrix
represented by the coefficient arrays with the vector or dense matrix represented by the

operand array.

SYNTAX

grid_sparse_setup (x, x_axes, setup, ier)

grid_sparse_matrix_vector_mult (ier, setup, y_axes, coeff_axes, x_axes, y, X,

a b, cl d e f gl

vector_grid_sparse_matrix_mult (ier, setup, y_axes, coeff_axes, x_axes, y, X,

abcl,d el f gl
grid_sparse_mat_gen_mat_mult (ier, setup, coeff_axes, y, x, a, b, c[, d, e[, f, gI)

gen_mat_grid_sparse_mat_mult (ier, setup, coeff_axes, y, x, a, b, c[, d, e[, £, gl])

deallocate_grid_sparse_setup (setup)

ARGUMENTS
x CM array of type real or complex. Represents the operand vector
or dense matrix in the operation y = Ax or y = xTA, where 4 is a
grid sparse matrix represented by the coefficient arrays a, b, c[, d,
ef. £, gll.
x_axes Front-end integer vector. The length of x_axes must be equal to

the rank of x. Each element of x_axes is one of the following
symbolic constants, describing the corresponding axis of x:

CMSSL_block_axis
CMSSL_grid_axis
CMSSL_instance_axis
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y_axes Front-end integer vector. The length of y_axes must be equal to
the rank of y. Each element of y_axes is one of the following
symbolic constants, describing the corresponding axis of y:
CMSSL _block_axis

CMSSL_grid_axis
CMSSL _instance_axis

coeff_axes Front-end integer vector. The length of coeff axes must be equal
to the rank of the arrays a, b, c|, d, e[, f, g]]. Each element of
coeff_axes is one of the following symbolic constants, describing
the corresponding axis of a, b, c[, d, €[, f, g]]:

CMSSL _block_axis
CMSSL_grid_axis
CMSSL_instance_axis

y CM array of the same data type and precision as x. Represents the
product vector or dense matrix in the operation y = Ax or y = xT4,
where A is a grid sparse matrix represented by the coefficient
arrays a, b, c[, d, el, f, gll.

a, b, c|, d el, f, g]] Coefficient CM arrays of the same data type and precision as x.
Must have the same rank, axis extents, and layout directives. See
description below.

setup Scalar integer. Internal variable. When you call a multiplication
routine or the deallocation routine, you must supply the setup
value assigned by the associated setup call.

ier Scalar integer. Return code; set to 0 upon successful return, or to
-1 if any of the restrictions on axis labels are violated.

DESCRIPTION

Follow these steps to perform one multiplication operation, or multiple operations, se-
quentially:

1. Call grid_sparse_setup.
2. Call one or more of the following multiplication routines:
= grid_sparse_matrix_vector_mult (grid sparse matrix X vector)

= vector_grid_sparse_matrix_mult (vector X grid sparse matrix)
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« grid_sparse_mat_gen_mat_mult (grid sparse matrix X dense matrix)

* gen_mat_grid_sparse_mat_mult (dense matrix X grid sparse matrix)

To compute more than one product in which the shape, axis types, and axis
declaration order of the operand vectors (or dense matrices) remain the same,
follow one call to grid_sparse_setup with multiple calls to the multiplication
routines. If the shape, axis types, or axis declaration order of the operand vec-
tor (or dense matrix) changes, you must start with Step 1 again.

3. After all multiplication calls associated with the same grid_sparse_setup call,
call deallocate_block_sparse_setup to deallocate the partition manager work
space allocated by the setup routine.

More than one setup may be active at a time. That is, you may call the setup routine
more than once without calling the deallocation routine.

The grid sparse matrix routines support multiple instances. By specifying instance
axes, you may perform multiple concurrent operations with each multiplication call.

Axis Types. Each of the arrays a, b, c[, d, e[, f, gl], x, and y has one, two, or three axes
corresponding to the grid. These axes are called the grid axes.

In addition, each of the arrays may have one or two axes that define the block asso-
ciated with each grid point. These axes are called the block axes.

Finally, each array may have multiple instances, defined by any number of instance
axes. (For a discussion of instance axes, refer to Chapter 1.)

Grid Multiplication. The grid sparse matrix routines mulitiply the elements of the ar-
rays a, b, c[, d, e[, £, g]] by the elements of x and place the results in y. To compute this
product, the routines multiply the elements or blocks of a, b, c[, 4, e[, f; g]] at a given
grid point by the elements of x that reside at the same grid point and its nearest-neigh-
bor grid points. The boundary conditions are under user control. Functionally, the
routines perform a circular shift (CSHIFT in CM Fortran) of the array x. Thus, the high
boundary point takes the place of the missing nearest neighbor to the low boundary

point.

The formulas for grid sparse matrix multiplication are shown below. In these formulas,
al, a2, and a3 are the grid axes of x.

For grid_sparse_matrix_vector_muit and grid_sparse_mat_gen_mat_muit:

o is one of the following operations, performed with respect to the block axes:

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation 159



*  multiplication of single elements

. matrix vector multiplication
®  matrix matrix multiplication
On a 1-dimensional grid (one grid axis labeled a,):

y = a e CSHIFT (x, shift = -1, dim = al) +
bex+
¢ o CSHIFT (x, shift = +1, dim = al)

On a 2-dimensional grid (two grid axes labeled a; and ay):

y = a o CSHIFT (x, shift = -1, dim = al) +

b o CSHIFT (x, shift = -1, dim = g2) +
cex+

d o CSHIFT (x, shift = +1, dim = ql) +
e o CSHIFT (x, shift = +1, dim = a2)

On a 3-dimensional grid (three grid axes labeled aj, a,, and a3):

y = a o CSHIFT (x, shift = -1, dim = al) +
b e CSHIFT (x, shift = -1, dim = g2) +
¢ © CSHIFT (x, shift = -1, dim = g3) +
dex+
e o CSHIFT (x, shift = +1, dim = al) +
Jf e CSHIFT (x, shift = +1, dim = g2) +
g © CSHIFT (x, shift = +1, dim = a3)

For vector_grid_sparse_matrix_mult and gen_mat_grid_sparse_mat_mult:

o is one of the following operations, performed with respect to the block axes:
* multiplication of single elements
® vector matrix multiplication
®  matrix matrix multiplication
On a 1-dimensional grid (one grid axis labeled a;):
y = CSHIFT (a o x, shift = +1, dim = al) +

bex+
CSHIFT (c o x, shift = -1, dim = al)

On a 2-dimensional grid (two grid axes labeled a; and a3):

Version 3.1, June 1993
160 Copyright © 1993 Thinking Machines Corporation

Q



Chapter 4. Sparse Matrix Operations Grid Sparse Matrix Operations

y = CSHIFT (a o x, shift = +1, dim = aql) +
CSHIFT (b o x, shift = +1, dim = 42) +
coex+
CSHIFT (d o x, shift = -1, dim = ql) +
CSHIFT (e o x, shift = -1, dim = q2)

On a 3-dimensional grid (three grid axes labeled a;, a3, and a3):

y = CSHIFT (a o x, shift = +1, dim = al) +
CSHIFT (b o x, shift = +1, dim = a2) +
CSHIFT (c o x, shift = +1, dim = a3) +
doex+
CSHIFT (e o x, shift = -1, dim = al) +

CSHIFT (f e x, shift = -1, dim = a2) +
CSHIFT (g o x, shift = -1, dim = a3)

Rules for Grid Axes, Block Axes, and Instance Axes. The grid sparse matrix rou-
tines impose the following requirements with regard to the structure of the arrays a, b,
¢l d el f gll, x,and y:

; = If the grid is 1-dimensional with N points, then each array has one grid axis of
extent N.

= If the grid is 2-dimensional with N; X N points, then each array has two grid
axes of extents N; and N, respectively.

» If the grid is 3-dimensional with N; X N> X N3 points, then each array has three
grid axes of extents Nj, N, and N3, respectively.

»  The valid combinations of block axes are as follows:

» For grid_sparse_matrix_vector_mult or vector_grid_sparse_matrix_

mult: ‘
Number of block axes
a b cld el f gl 0 or2
x 0 orl
y 0 orl

The first combination (number of block axes = 0) is for multiplica-
tion of single elements. The second combination (number of block
axes = 2 for coefficients matrix and 1 for vectors) is for matrix vec-
tor or vector matrix multiplication.
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s For grid_sparse_mat_gen_mat_muit or gen_mat_grid_sparse_mat_

mult;
Number of block axes
abcldelf gl 2
x 2
y 2

This combination is for matrix matrix multiplication.

= The grid axes, block axes, and instance axes can occur in any order (which you
specify when calling the routines), with the condition that the grid, block, and
instance axes must occur in the same order in the arrays a, b, c[, d, e[, f, g]]-
That is, the arrays a, b, c[, d, e[, f, g]] must all have the same shape (axis decla-
ration order and extents). They must also have the same layout directives.

NOTES

Include the CMSSL Header File. The grid sparse matrix routines use symbolic con-
stants. Therefore, you must include the line

INCLUDE ’/usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls these routines. This file declares the types
of the CMSSL functions and symbolic constants.

Argument Values. The internal variable setup is required for communicating informa-
tion between the setup phase and the multiplication phase. The application must not
modify the contents of this variable.

Use of Setup Routine. The setup routine must be called whenever the shape, axis
types, or axis declaration order of x changes. For performance reasons, the cost of the
setup phase should be amortized over several multiplications.

Use of Deallocation Routine. Be sure to call deallocate_grid_sparse_setup to deallo-
cate work space after all of the grid sparse matrix operations associated with the setup
call have finished.

Numerical Stability. The grid sparse matrix operations are stable.
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Numerical Complexity. If  is the number of instances (the product of the extents of
the instance axes), N is the product of the extents of the grid axes, and each block of the
coefficient arrays has axis extents p X g, then the grid_sparse_matrix_vector_mult and
vector_grid_sparse_matrix_mult operations require 2pgNI floating-point operations for
real operands, or 8pgNI floating-point operations for complex operands.

If I is the number of instances, N is the product of the extents of the grid axes, each
block of the coefficient arrays has axis extents p X g, each block of x is g X r, and each
block of y is p X r, then the grid_sparse_mat_gen_mat_mult and gen_mat_grid_sparse_
mat_mult operations require 2pqgrNI floating-point operations for real operands, or
8pqrNI floating-point operations for complex operands.

Performance Hints. Performance is strongly dependent on layout, and is best when
the axes representing the vectors and matrices are local to a processing element. You
may meet this condition by using the :serial layout directive or using the detailed axis
descriptors of the CM Fortran CMF$LAYOUT directive. Otherwise, the routines reshape
the arrays, incurring a performance cost.

EXAMPLES

Sample CM Fortran code that uses the grid sparse matrix operations can be found
on-line in the subdirectory

grid-sparse/cmf/

of a CMSSL examples directory whose location is site-specific.
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Chapter 5

Linear Solvers for Dense Systems

This chapter describes the CM Fortran interface to the CMSSL general linear sys-
tem solver routines. One section is devoted to each of the following topics:

= introduction

®  Gaussian elimination (LU decomposition)

» solving linear systems using Householder transformations (QR decompo-
sition)

® matrix inversion and the Gauss-Jordan solver

» Gaussian elimination with external storage

® QR factorization and least squares solution with external storage

= references

5.1 Introduction

Listed below are the CMSSL routines for solving dense linear systems. All rou-
tines accept either real or complex data.
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%

= In-core solvers:

Routines that use Gaussian elimination (with or without pivoting)
to decompose one or more matrices A into their LU factors; use
those factors to solve the linear systems AX = B or ATX = B (where
B consists of one or more right-hand-side vectors); and perform re-
lated operations:

gen_lu_factor gen_ju_apply | _inv_tra
save_gen_lu gen_ju_apply_u_inv_tra
restore_gen_lu gen_lu_get_|
gen_lu_solve gen_iu_get_u
gen_lu_solve_tra gen_lu_infinity_norm_inv
gen_lu_apply_|_Inv deallocate_gen_iu

gen_lu_apply_u_inv

Routines that use Householder transformations (with or without
column pivoting) to decompose one or more matrices A into their
QR factors; use those factors to solve the linear systems AX = B or
ATX = B (where B consists of one or more right-hand-side vectors);
and perform related operations:

gen_qr_factor gen_qr_get_r

save_gen_qr gen_qr_apply_p
restore_gen_qr gen_qr_apply_p_inv
gen_qr_solve gen_qr_zero_rows
gen_qr_solve_tra gen_qr_extract_diag
gen_qgr_apply_q gen_qr_deposit_diag
gen_qr_apply_q_tra gen_gr_infinity_norm_inv
gen_qr_apply_r_inv gen_gr_r_infinity_norm_inv
gen_qr_apply_r_inv_tra deallocate_gen_qr

A routine, gen_gj_invert, that inverts a square matrix in place, using
the Gauss-Jordan routine.

A routine, gen_gj_solve, that solves (with partial or total pivoting)
a system of equations of the form AX = B using a version of Gauss-
Jordan elimination. B contains one or more right-hand-side vectors.
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5.1.1

5.1.2

®  External solvers:

* Routines that use block Gaussian elimination with partial pivoting
to decompose a matrix A (which is too large to fit into core
memory) into its LU factors, and use those factors to solve the linear
system AX = B:

gen_lu_factor_ext
gen_lu_solve_ext

s Routines that use block Householder reflections to perform the fac-
torization A = QR, where A is a matrix that is too large to fit into
core memory, and use the QR factors to solve the linear system AX
=B:

gen_qr_factor_ext
gen_qr_solve_ext

Embedding Coefficient Matrices within Larger Matrices

All of the in-core CMSSL general linear system solver routines allow you to
embed the systems to be solved within larger matrices that have more rows and
columns than the number of equations to be solved or the number of unknowns,
respectively. You must specify, in the calling sequences, the axis lengths of the
systems to be solved. For example, if the systems to be solved have dimensions
m X n, with rows and columns counted by axes row_axis and col_axis respective-
ly, you may declare axes row_axis and col_axis to have extents greater than m
and n, respectively; but the routine will work only with the upper left-hand m x
n elements of the matrix defined by row_axis and col_axis. The man pages for
the individual solvers provide detailed information about axis extents.

Choosing an Aigorithm

Use these guidelines when deciding whether to use the QR or LU routines, and
whether to use pivoting:

® In most cases, the QR routines without pivoting or the LU routines with
partial pivoting suffice. These two options are both stable for almost all
practical purposes.

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation 167



® For rank-deficient matrices, use the QR routines with pivoting. (Section
5.3.6 discusses working with ill-conditioned matrices.) It is unnecessary
and wasteful of time to use the QR routines with pivoting for well-condi-
tioned matrices.

® For matrices that are diagonally dominant, or where LU decomposition
without pivoting is known to work, use the LU routines without pivoting.
This option will not yield correct results if the matrix is ill-conditioned or
if zeros appear on the diagonal during the elimination process.
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5.2 Gaussian Elimination

Given a CM array A containing one or more instances of a dense matrix 4, and
a CM array B containing corresponding right-hand sides B, the CMSSL Gaussian
elimination routines perform the following operations:

= Use Gaussian elimination, with or without partial pivoting, to factor each
matrix A into two matrices, L and U. When pivoting is used, the effects
of the pivoting are included in L.

» Use these LU factors to solve the system AX = B or ATX = B, where B
consists of one or more right-hand-side vectors.

» Apply UL, (UD)T, L1, or (L71)T to any supplied matrix. (These routines
use the L and U factors to solve triangular systems of the form LX=B,
LTX=B, UX=B, and UTX=B.)

® Produce L or U separately.
®» Estimate the infinity norm of each matrix A-1.
= Save and restore internal information about the LU factors.

The Gaussian elimination routines (commonly referred to as the “LU routines™)
are listed below. Throughout this section, the notation M-T is used for (M-1)T =
(MT)-1, For detailed descriptions of these routines (including calling sequences,
argument definitions, definitions of the L and U factors, and information about
usage), refer to the man page at the end of this section.

gen_lu_factor Factors each instance of a matrix A into L and U.

save_gen_lu Saves internal information about the LU factors in a
file.

restore_gen_lu Restores internal information about the LU factors
from a file.

gen_lu_solve Uses the LU factors returned by gen_lu_factor to solve
the system(s) AX = B.

gen_lu_solve_tra Uses the LU factors returned by gen_lu_factor to solve

the system(s) ATX = B.

gen_lu_apply_I_Inv Given the LU factors returned by gen_lu_tactor,
applies L1 to any supplied matrix or vector.
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gen_lu_apply_u_inv Given the LU factors returned by gen_lu_factor,
applies U~! to any supplied matrix or vector.

gen_lu_apply_l_inv_tra Given the LU factors returned by gen_lu_factor,
applies LT to any supplied matrix or vector.

gen_lu_apply_u_inv_tra Given the LU factors returned by gen_lu_factor,
applies U-T to any supplied matrix or vector.

gen_lu_get_| Given the LU factors returned by gen_lu_factor,
produces the factor L separately.
gen_lu_get_u Given the LU factors returned by gen_lu_factor,

produces the factor U separately.

gen_lu_infinity_norm_inv
Given the LU factors returned by gen_lu_factor,
estimates the infinity norm of each matrix A-1. Uses
the method developed by Hager; see reference 5
listed in Section 5.7.)

deallocate_gen_lu Deallocates the processing element memory required
by the above routines.

5.2.1 Blocking and Load Balancing

The LU routines use blocking and load balancing. These strategies are described
in the section on computation of block cyclic permutations in Chapter 14. For
details about how the LU routines implement blocking, see reference 4 listed in
Section 5.7.

5.2.2 Numerical Stability

The stability of Gaussian elimination is a function of the size of the linear system
and the growth factor (see references 1 and 3). For extreme cases, the growth
factor may be very large. For most systems, it is highly unlikely that the growth
factor for Gaussian elimination with partial pivoting will be very large, and for
all practical purposes Gaussian elimination with partial pivoting is stable.
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5.2.3 Saving and Restoring the LU State

The LU factorization routine generates internal state variables required for com-
puting the solution. These variables are not made available as arrays to user
applications because their sizes and contents are CM configuration-dependent.
However, it is sometimes desirable to save the internal state to a file for future
use. The save_gen_lu and restore_gen_lu routines allow you to save and restore
the internal LU state.

The LU routines allow you to have more than one factorization “active” at a time;
for example, the sequence of calls

setup X = gén_lu_factor (X, ...)
setup Y = gen_lu factor (¥, ...)
call gen lu solve(B X, X, setup X, ...)
call gen_ lu solve(B Y, Y, setup ¥, ...)

is valid. You may, however, want to use save_gen_lu and restore_gen_lu to carry
the internal state over between program runs.

It is not intended that the save and restore routines be used to conserve memory.
The state variables are very small compared to the size of the typical matrix A.
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Given a CM array A containing one or more instances of a dense matrix A, and a CM array
B containing corresponding right-hand sides B, the routines described below use Gaussian
elimination (with or without partial pivoting) to factor each A into two matrices, L and U,
described below; use the LU factors to solve the linear systems AX = B or ATX = B; apply
matrices derived from L and U to each B; provide access to the L and U factors; and esti-
mate the infinity norm of each A-1. When pivoting is used, the effects of the pivoting are
included in L.

SYNTAX

setup = gen_lu_factor (A, m, n, row_axis, col_axis, nblock, pivoting_strategy, ier)
save_gen_lu (Setup, unit, iostat, ier)

setup = restore_gen_lu (A, m, n, row_axis, col_axis, nblock, pivoting_strategy,
unit, iostat, ier)

gen_lu_solve (B, A, setup, nrhs, ier)
gen_lu_solve_tra (B, A, setup, nrhs, ier)
gen_lu_apply_|_inv (B, A, setup, nrhs, ier)
gen_lu_apply_u_inv (B, A, setup, nrhs, ier)
gen_lu_apply_|_inv_tra (B, A, setup, nrhs, ier)
gen_lu_apply_u_inv_tra (B, A, setup, nrhs, ier)
gen_lu_get_| (B, A, setup, ier)

gen_lu_get_u (B, A, setup, ier)
gen_lu_lnfinity_norm_inv (a, A, setup, ier)

deallocate_gen_lu (setup)

ARGUMENTS

In the descriptions that follow, save_gen_lu and restore_gen_lu are called the LU save
and restore routines; gen_lu_solve and gen_lu_solve_tra are called the LU solver rou-

Version 3.1, June 1993
172 Copyright © 1993 Thinking Machines Corporation



Chapter 5. Linear Solvers for Dense Systems Gaussian Elimination

tines; gen_lu_apply_|_inv, gen_lu_apply_u_Iinv, gen_lu_apply_I_inv_tra, and
gen_lu_apply_u_inv_tra are called the LU factor application routines; gen_lu_get_I and
gen_lu_get_u are called the LU get-factor routines; and gen_lu_infinity_norm_inv is
called the LU infinity norm routine.

Also, in this description, A and B refer to the active matrices with which the routines
work. These matrices may be contained (as the upper left-hand submatrices) in larger
matrices within A and B, respectively. Details are provided below.

Finally, the notation M-T is used for (M-1)T = (MT)-1,

setup Scalar integer variable. Setup ID returned by gen_lu_factor and
restore_gen_lu. When you call any of the other LU routines, you
must supply the value returned by the corresponding gen_lu_
factor or restore_gen_lu call.

B CM array of the same type (real or complex) as A. The instance
axes of B must match those of A in order of declaration and
extents. When you call gen_lu_get_| or gen_lu_get_u, A and B
must have the same rank, axis extents, and layout directives.

Solver and Factor Application Routines. When you call one of
the LU solver or factor application routines, B must contain one
or more instances of B, where each B consists of one or more
right-hand-side vectors. Upon return from gen_lu_solve or gen_
lu_solve_tra, each B within B is overwritten by the solution(s) to
AX = B or ATX = B, respectively. Upon return from a factor
application routine, each B is overwritten by the product L-1B,
U-'B, LTB, or U-TB.

For the solver and factor application routines, the following
restrictions hold:

* If each instance B within B consists of only one right-
hand-side vector (nrhs = 1), you may represent B in either
of the following ways:

® It may have rank 2 with number of columns = 1.
In this case, each B has dimensions m X 1 (and
may consist of the upper left-hand m X 1 elements
of a larger matrix). The rows of each B must be
counted by axis row_axis (from the gen_lu_factor
call); the single column must be counted by axis
col_axis.
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* It may have rank 1. In this case, each B has di-
mension m (and may consist of the first m
elements of a larger vector). The elements of each
B must be counted by axis row_axis (if row_axis
< col_axis) or by axis (row_axis - 1) (if col_axis
< row_auxis). For an example, see the Notes sec-
tion.

* If each B within B consists of multiple right-hand-side
vectors (nrhs > 1), then each B has dimensions m X nrhs,
and may consist of the upper left-hand m X nrhs elements
of a larger matrix. The rows and columns of B must be
counted by axes row_axis and col_axis, respectively.

Get-Factor Routines. When you call gen_lu_get_| or gen_lu_get_
u, B must have the same rank, axis extents, and layout directives
as A. Upon completion of gen_lu_get_|, each m X n instance B
within B defined by axes row_axis and col_axis is overwritten
with the factor L of the corresponding A within A. Upon
completion of gen_lu_get_u, each instance B within B is
overwritten with the factor U of the corresponding A within A.

The L factor produced by gen_lu_get_I contains the effects of
pivoting. Furthermore, the L and U factors produced by
gen_lu_get_| and gen_lu_get_u are in block cyclic form. To obtain
the factors in elementwise consecutive order, you may use the
compute_fe_block_cyclic_perms and permute_cm_matrix_axis_
from_fe routines.

Do not use the arrays obtained from the get-factors routines as
input to the solver or factor application routines.

Real CM array with the same rank and precision as A. The axes
identified by row_axis and col_axis in the gen_lu_tactor call must
have extent 1. Thus, each matrix A embedded in A corresponds to
a real number in a.

Upon successful completion of gen_lu_infinity_norm_inv, the
estimated infinity norm of the inverse of each matrix A within A
is placed in the corresponding position of a.

Real or complex CM array. When you call gen_lu_factor, A should
contain one or more instances of a coefficient matrix A to be
factored. Each A is assumed to be dense with dimensions m X n.
m must be greater than or equal to n; but if you specify pivoting_
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strategy = CMSSL_no_pivoting, the current implementation
requires m = n. Upon completion of gen_lu_factor, each A in A is
overwritten with its LU factors.

The axes identified by row_axis and col_axis may have extents
greater than m and n, respectively; that is, each instance of A may
be contained in the upper left-hand m X n elements of a larger
matrix wihin A.

‘When you call any of the other LU routines, A must have the same
data type, rank, and shape (axis extents and layout directives,
including orderings and weights) as the original A that was
factored. You must also be using the same partition size as when
you originally factored A. Supply in A the LU factors returned in
A by gen_lu_factor.

m Scalar integer variable. The number of rows in each coefficient
matrix A within A. Also, the number of rows in each right-hand
side B (or, if each B is a single vector, the number of elements in
B). m must be greater than or equal to n; but if you specify
pivoting _strategy = CMSSL_no_pivoting, the current
implementation requires m = n.

If you intend to call gen_lu_infinity_norm_inv, m must equal n,
since each matrix A within A must be invertible, and therefore
square.

n Scalar integer variable. The number of columns in each
coefficient matrix A within A. m must be greater than or equal to
n; but if you specify pivoting_strategy = CMSSL_no_pivoting, the
current implementation requires m = n.

If you intend to call gen_lu_infinity_norm_inv, m must equal n,

since each matrix A within A must be invertible, and therefore
square.

row_axis Scalar integer variable. Identifies the axis of A that counts the
rows of each coefficient matrix A.

col_axis Scalar integer variable. Identifies the axis of A that counts the
columns of each coefficient matrix A.

nblock Scalar integer variable. Blocking factor. The blocking factor you
specify when you call gen_lu_factor is also used in any subsequent
LU solver, factor application, get-factor, or infinity norm calls in
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which you supply the setup ID returned by gen_lu_factor. Use
these guidelines when choosing an nblock value:

For typical applications, nblock = 8 is a good choice. An
nblock value of 16 or even 32 may yield faster factoriza-
tion in some cases.

nblock should always be < n; nblock values > n use excess
time and especially memory.

For a single right-hand-side vector, the solver routines
will most likely be faster with a larger value of nblock. On
the other hand, the amount of auxiliary storage used is
proportional to nblock, so if memory is tight, a smaller
nblock may be a better choice.

For optimal performance, ensure that the subgrid length
in each dimension is a multiple of nblock. If that is not
possible, choose an nblock value that is less than or equal
to the subgrid lengths in both dimensions.

pivoting_strategy Scalar integer variable specifying the pivoting strategy to be used.

nrhs

unit

The value must be one of the following symbolic constants:

CMSSL _partial_pivoting

Selects partial pivoting. The pivot is chosen from the pivot
column; rows are, in effect, permuted. Note that this
implementation does not use block or parallel pivoting; it
finds one pivot row at a time.

CMSSL_no_pivoting
Selects no pivoting. The pivot is taken from the block cyclic
diagonal.

Scalar integer variable. The number of columns in each instance B
within B. If each B is a single vector, supply 1 for the value of

Scalar integer. Valid unit number associated with the file to or
from which the LU state is to be written or read. Use the CM
Fortran utility CMF_FILE_OPEN to associate a file with a unit
number (or use the equivalent utility to associate a device or
socket with a unit number). The save_gen_lu and restore_gen_lu
calls write and read data using CMF_CM_ARRAY_TO_FILE_SO and
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CMF_CM_ARRAY_FROM_FILE_SO, respectively. You must rewind
the file before calling restore_gen_lu.

iostat Scalar integer variable. Upon return, contains the status of the [JO
operation. If ier = 0, iostat contains the number of bytes written
or read. For the meanings of other iostat codes, refer to the
descriptions of CMF_CM_ARRAY_TO_FILE_SO (for save_gen_lu)
and CMF_CM_ARRAY_FROM_FILE_SO (for restore_gen_lu) in the
CM Fortran documentation set.

ier Scalar integer variable. Return code; set to 0 upon successful
return.

Values between -1 and -9, inclusive, indicate problems with one
or more of the CM arrays containing matrices in any of the LU
calls:

-1 Invalid array home. The array must be a CM array.

-2 Invalid rank; must be > 2.

-3 Invalid column extent; must be > m.

-4 Invalid row extent; must be > n.

-9 Invalid data type; must be real or complex (single-
or double-precision).

Values that are multiples of -10 indicate problems with non-array
arguments:

-10  System failed to allocate the setup object, setup.

-20  m, n, or nrhs is invalid; all must be > 0 and m must
be greater than or equal to n.

-30  row_axis or col_axis is invalid. 1 < row_axis,
col_axis < rank (A) must be true, and row_axis and

* col_axis must not be equal.

-40  nblock is invalid; it must be greater than or equal
to 1.

-50  pivoting_strategy is invalid; must be
CMSSL_partial_pivoting or CMSSL_no_pivoting.

-60  nrhs is invalid.

-80  You specified m not equal to n with
CMSSL_no_pivoting in a factorization call, or you
specified m not equal to » in the factorization call
associated with this call to the infinity norm routine.
These combinations are invalid.

-100 setup is invalid. (You did not supply the value
returned by gen_lu_factor.)
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Values between -102 and -108, inclusive, indicate problems with
the consistency of A or B in a solver, factor application, or
get-factor routine:

-102 The rank of A or B is invalid (must be > 2 for A or .
> 1 for B), or is inconsistent with the rank of A
in the factorization call.

-105 The extents of the instance axes of A or B are
inconsistent with those of A in the factorization call.

-106 B must have the same layout directives as A when
you call gen_lu_get_u or gen_lu_get_|.

-108 The data type of A or B is inconsistent with that of A
in the factorization call.

The save_gen_lu and restore_gen_lu routines return the following
value if they encounter an I/O error:

-200 /O error. See the value of iostat for more information.

DESCRIPTION

Given a CM array A containing one or more instances of a coefficient matrix A, and a
CM array B containing corresponding right-hand sides B, the LU routines perform the
operations listed below. All of the LU routines support multiple instances.

gen_lu_factor Uses Gaussian elimination (with or without par-
tial pivoting) to factor each matrix instance 4 into
two matrices, L and U, described below. If pivot-
ing is specified, the effects of the pivoting are
included in L.

save_gen_lu Saves internal information about the LU factors in
a file.

restore_gen_lu Restores internal information about the LU fac-
tors from a file.

gen_lu_solve Uses the LU factors returned by gen_lu_factor to
solve the system(s) AX = B.

gen_lu_solve_tra Uses the LU factors returned by gen_lu_factor to
solve the system(s) ATX = B.
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gen_lu_apply_|_inv Given the LU factors returned by gen_lu_factor,
applies L1 to B.

gen_lu_apply_u_inv Given the LU factors returned by gen_lu_factor,
applies U-! to B.

gen_lu_apply_|_inv_tra Given the LU factors returned by gen_lu_factor,
applies LT to B.

gen_lu_apply_u_inv_tra Given the LU factors returned by gen_lu_tactor,
applies UT to B.

gen_lu_get_| Given the LU factors returned by gen_lu_factor,
produces the factor L separately.

gen_lu_get_u Given the LU factors returned by gen_lu_factor,

produces the factor U separately.

gen_lu_infinity_norm_inv Estimates the infinity norm of each matrix 4-1,
given the LU factors of each A as computed by the
gen_lu_factor routine.

deallocate_gen_lu Deallocates the processing element memory re-
quired by the above routines.

Setup and Deallocation. The gen_lu_factor and restore_gen_Ju routines allocate pro-
cessing element storage space and return a setup ID. You must supply this setup ID in
subsequent LU solver, factor application, get-factor, and infinity norm calls, or the
save_gen_lu routine, as long as you are working with the same set of factors; you must
also supply it to deallocate_gen_u. You can follow one call to gen_lu_tactor or restore_
gen_lu with multiple calls to the other LU routines, thus avoiding the overhead of fac-
toring the same matrix or matrices repeatedly.

The deallocate_gen_lu routine deallocates the memory needed for a particular factor-
ization, and invalidates the associated setup ID. Attempts to use a deallocated setup ID
result in errors.

You can work with more than one set of LU factors at a time by calling gen_lu_factor or
restore_gen_lu more than once without calling deallocate_gen_lu. Be sure to supply the
correct setup ID in each subsequent LU call. When you have finished working with a
set of factors, be sure to use deallocate_gen_lu to deallocate the associated memory.
Repeated calls to gen_lu_factor or restore_gen_lu without deallocation can cause you
to run out of memory.
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Factorization Routine. The gen_lu_factor routine uses Gaussian elimination (with or
without pivoting) to factor each instance of A into two matrices, L and U. One common
representation for this factorization is

PA=LU

where P is a permutation matrix resulting from the pivoting process, and L and U are
lower triangular and upper triangular, respectively. However, because of details of the
implementation of the LU routines, in this description we represent the factorization as

A=LU

where the effects of pivoting are included in L. Thus, L is the inverse of the operator
defined by the sequence of row operations performed in the Gaussian elimination pro-
cess (which occurs in block cyclic order). The row operations include the row
interchanges, if pivoting is specified. Therefore, L is not necessarily lower triangular,
and U is not upper triangular. See The LU Factors Defined, below, for details.

Upon completion of gen_lu_factor, each instance of A within A is overwritten with data
giving the LU factors of A. When you call the LU solver, factor application, and get-fac-
tors routines, you must supply the same A that was returned by gen_lu_tactor. To obtain
the L and U factors separately, use the get-factor routines.

Save and Restore Routines. You may save internal information about the LU factors
in a file for use in later calls to the other LU routines. To save the LU information, call
save_gen_lu after the factorization is complete but before deallocating the storage
space. To restore the LU information, rewind the file and call restore_gen_lu; this call is
typically followed by calls to the other LU routines.

Solver Routines. To solve AX = B, gen_lu_solve performs forward elimination:
A=LUletUX=C
C=LB
followed by back substitution:
X =UlC=UY(L!B)
Similarly, to solve ATX = B, gen_lu_solve_tra performs forward elimination:
AT = UTLT; let I™X = C

c=UTB
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followed by back substitution:
X =L7Tc = L T(y-TB)

Upon completion of the solver routines, each B within B is overwritten with the solu-
tion.

Factor Application Routines. The gen_lu_apply_|_inv, gen_lu_apply_u_inv, gen_lu_
apply_l_inv_tra, and gen_lu_apply_u_inv_tra routines allow you to apply matrices
derived from the LU factors to arbitrary matrices or vectors B contained in B. Upon
completion of the routine, each B in B is overwritten with the specified product (L-1B,
U-'B, L-TB, or U-TB). Thus, these routines use the L and U factors to solve triangular
systems of the form LX=B, LTX=B, UX=B, and UTX=B.

In most cases, you should use a solver routine, rather than using the factor application
routines separately, to solve AX = B or ATX = B. Using the factor application calls may
require an extra permutation in the case of no pivoting. For details about exactly how
the LU factors and their inverses are defined, see The LU Factors Defined, below.

Get-Factor Routines. The gen_lu_get_| and gen_lu_get_u routines provide access to
the L and U factors separately. Upon completion of gen_lu_get_l, each B within B con-
tains the factor L for the corresponding coefficient matrix A within A. Upon
completion of gen_lu_get_u, each B within B contains the factor U for the correspond-
ing coefficient matrix A within A. The rows and columns of the factors are counted by
axes row_axis and col_axis, respectively.

The L factor produced by gen_lu_get_I contains the effects of pivoting. Furthermore,
the L and U factors produced by gen_lu_get_I and gen_lu_get_u are in block cyclic
form. To “undo” the block cyclic ordering, you may use the compute_fe_block_cyclic_
perms and permute_cm_matrix_axis_from_fe routines. (For an example, see the on-line
sample code in the subdirectory block-cyclic/emf/ of the CMSSL examples direc-
tory.) For details about exactly how the LU factors and their inverses are defined, see
The LU Factors Defined, below.

Infinity Norm Routine. Given the LU factors returned by gen_lu_factor, the gen_lu_
infinity_norm_inv routine estimates the infinity norm of each matrix A-1. Upon succes-
sful completion, the infinity norm of each A1 is placed in the position of a
corresponding to A.
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The infinity norm of a matrix M, denoted here by || M ||, is defined by

IMllo = max [|Mx |l

I % floo= 1

where the infinity norm of a vector, || x Jjeo, is defined as the maximum of the absolute
values of the vector components:

Ixle = max|z|

The infinity-norm condition number of a matrix M is equal to the product of | M |l
and || M! |

The LU Factors Defined (Square Case). The following definitions apply to the case
in which m = n. Effectively, the gen_lu_factor routine factors a block cyclic permuta-
tion, A, of each matrix A that you supply in A. In a factorization with pivoting, the
matrix A, is factored into

Ac =P,

where L. is lower triangular, U, is upper triangular, and P is the permutation matrix
resulting from the pivoting process. In a factorization without pivoting, the factoriza-
tion is

Ac = LU,
where L. is lower triangular and U, is upper triangular.
The LU factors of A are defined in terms of A, and its factors as follows:

=  (Case 1: Factorization with pivoting
By definition,
A. =Pi"lAP,
where P; is the permutation giving the correspondence between standard and
block cyclic row order, and P, is the permutation giving the correspondence
between standard and block cyclic column order. (These permutations depend

on the array size and layout, the partition size, and the blocking factor you
supply.) We therefore have
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A=LU=PiA Py
=P (P'LU) P!
= PyP1L (Py71Py) U Pyt

from which we choose to define
L=PPL.P 1
U= PU.P;!
®  (Case 2: Factorization without pivoting

The no-pivoting case requires that no small pivots be encountered during the
elimination process. Therefore, the factorization routine pre-permutes the
matrix A to assure that the diagonal elements of A also appear on the diagonal
of A.. Internally, A is pre-permuted to obtain

A" =APP;!

By definition, we have
Ac = PTlA°P,

from which it follows that
A = Pr7lAP,

and therefore

A =LU= PiAP;}
= P1L.U.P;7!
= PyL; (P1"'Py) U.Py!

from which we choose to define

L=PLP!
U= P,U.P;!

The gen_lu_get_| and gen_lu_get_u routines return the L and U factors defined above.
The inverses L-1, U-1, LT, U-T applied by the factor application routines are derived
from the L and U factors defined above and are true inverses; that is, L-1L = LL-1 = ] =
U-1U = UU-. (The inverses are also true in the block cyclic space; that is, L,"1L, =
LI =1=U U, = U UL

The definitions above generalize to the non-square case (m > n) using the same prin-
ciples.
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NaNs and Infinities. As mentioned above, the matrices A and B may be contained (as
the upper left-hand submatrices) in larger matrices within the arrays A and B, respec-
tively. In this case, if there are NaNs or infinities in the larger matrix outside of A or B,
it is possible that other locations outside of A or B could become NaNs or infinities as
well.

Distinct Variables. The input CM arrays A and B must be distinct variables.

Include the CMSSL Header File. The gen_lu_factor routine is a function and uses
symbolic constants. Therefore, you must include the line

INCLUDE ‘/usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls these routines. This file declares the types
of the CMSSL functions and symbolic constants.

Argument Values. The internal variable setup is required for communicating informa-
tion between the factorization routine and the other LU routines. The application must
not modify the contents of this variable.

Saving and Restoring the LU State. If you want to save the internal state in one
program run and restore it in a different run, you must save the array of factored ma-
trices in a file in addition to saving the internal state using save_gen_lu. Be sure to save
the array in a different file than that used for saving the state. When you read the array
back into memory prior to restoring the internal state, you must use the same partition
size as when you originally performed the factorization; and the restored array must
have exactly the same shape (axis extents and layout directives, including orderings
and weights) as when you saved it.

Nondegeneracy Required. In the current release, each matrix A within A must have a
column space of rank n when you call one of the solver routines.

Rank of B. The following example illustrates the options for defining the rank of B.
Suppose A, n, m, row_axis, and col_axis are defined as follows:

A (5, 10,5)
m=n=35
row_axis = 1
col_axis = 3
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and each B in B is a single vector. You may define B in either of the two following
(equivalent) ways:

B (5,10, 1)
B (5, 10)

On the other hand, if you define

A5, 10,5
m=n=35
row_axis = 3
col_axis = 1

then the possibilities for B are as follows:

B (1, 10, 5)
B (10, 5)

Performance. Performance improves for larger subgrid sizes (and therefore depends
upon the layout of A). For information on subgrids, refer to the CM Fortran documen-
tation set.

To optimize performance, follow these guidelines:

Ensure that the subgrid length in each dimension is a multiple of nblock. If that
is not possible, choose an nblock value that is less than or equal to the subgrid
lengths in both dimensions.

Lay out A so that the subgrid sizes along axes row_axis and col_axis differ
from one another by no more than a factor of 4 or 5.

Use axis extents exactly equal to m X n for the matrices A and m X nrhs for the
matrices B. Use the same processing element layout for the arrays A and B.

Numerical Complexity. If the matrices A have dimensions (m X n), the matrices B
have nrhs right-hand sides, and [ is the number of instances (the product of all axis
extents except axes row_axis and col_axis), then:

The LU factorization routine requires approximately [m-(n/3)]n?I floating-
point operations for real operands and 4[m-(n/3)]n?I floating-point operations
for complex operands.

The LU solver routine requires approximately 2*nrhs*(2m-n)n! floating-point
operations for real operands and 8*nrhs*(2m-n)nl floating-point operations
for complex operands.
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Performance Cost of Pivoting. The cost of pivoting is very much dependent on size
and layout. The extra cost of pivoting is greatest for relatively small matrices. For very
large matrices (using nearly all processing element memory), the performance of the
factorization with pivoting is comparable to the performance without pivoting,
whereas the solver remains about 50% slower for the pivoting version.

EXAMPLES

Sample CM Fortran code that uses the LU routines can be found on-line in the subdi-
rectories

lu/cmf/
and
infinity-norm/cmf/

of a CMSSL examples directory whose location is site-specific. |
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5.3 Routines for Solving Linear Systems Using
Householder Transformations (“QR” Routines)

5.3.1

This section describes the CMSSL routines for solving linear systems using
Householder transformations (commonly referred to as the “QR” routines). The
following topics are included:

= the QR routines and their functions
®= QR factorization
= Householder algorithm
= blocking, load balancing, and the QR factors defined
® numerical stability
= the pivoting option: working with ill-conditioned systems
= saving and restoring the QR state
For detailed descriptions of the QR routines (including calling sequences, argu-

ment definitions, and information about usage), refer to the man page at the end
of this section.

Throughout this section, the following conventions are used:
= M denotes the conjugate of M.
s M-T denotes (M-1)T = (MT)-L,

= “A” refers to a matrix being factored and “B” refers to the right-hand
side(s). One or more instances of A and B are embedded (possibly within
larger matrices) in the CM arrays A and B, respectively; the operations
described are performed on all instances concurrently. The man page pro-
vides details about A and B.

The QR Routines and Their Functions

Given a CM array A containing one or more instances of a coefficient matrix A,
and a CM array B containing corresponding right-hand sides B, the CMSSL pro-
vides the routines and operations listed below.
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Factorization routine:

gen_gqr_factor

Save and restore routines:

save_gen_qr

restore_gen_qr

Solver routines:

gen_gr_solve

gen_gr_solve_tra

CMSSL for CM Fortran (CM-5 Edition)

Uses Householder transformations to
factor each matrix instance A into two
matrices, Q and R, (or, if pivoting is
specified, three matrices, Q, R, and P-1),
described in Section 5.3.2.

Saves internal information about the QR
factors in a file.

Loads internal information about the QR
factors from a file.

Uses the QR factors returned by

gen_qr_factor to solve the system(s) AX
= B.

Uses the QR factors returned by

gen_qr_factor to solve the system(s) ATX
= B.

Factor application routines: These routines use the factors produced by the QR
factorization routine to solve triangular systems of the form RX=B and RTX=B
and trapezoidal systems of the form QX=B or QTX=B.

gen_qr_apply_q

gen_qr_apply_q tra

gen_qr_apply_r_inv

188

Given the QR factors returned by
gen_qr_factor, applies Q (or Q, in the
case of complex data) to B for each
instance.

Given the QR factors returned by
gen_qr_factor, applies QT (or QH, in the
case of complex data) to B for each
instance. Note that since Q is orthogonal
(or unitary, in the complex case), QH=
QL

Given the QR factors returned by
gen_qr_factor, applies R! to B for each
instance.
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gen_qgr_apply_r_Inv_tra

Get-R routine:

gen_qr_get_r

Pivot application routines:

gen_qr_apply_p

gen_qr_apply_p_Inv

Zeroing routine:

gen_qr_zero_rows

Diagonal manipulation routines:

gen_qr_extract_diag

gen_qr_deposit_diag

Version 3.1, June 1993
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Given the QR factors returned by
gen_qr_factor, applies R°T to B for each
instance.

Given the QR factors returned by
gen_gr_factor, produces the factor R for
each instance.

Given the QR factors returned by
gen_qr_factor, applies P to B for each
instance, where P is the permutation
matrix that corresponds to the pivoting
process. Use this routine only if you
specified pivoting in the associated call
to gen_qr_factor.

Given the QR factors returned by
gen_gr_factor, applies P-1 = PT to B for
each instance. Use this routine only if
you specified pivoting in the associated
call to gen_qr_factor.

Zeroes the final rows of each
two-dimensional matrix contained in B.
The rows are counted in block cyclic
order.

Given the QR factors returned by
gen_qr_factor, returns the block cyclic
diagonal entries of R for each instance.

Given the QR factors returned by
gen_qr_factor, overwrites the block
cyclic diagonal entries of each instance
of R with values you supply.
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Infinity norm routines:

gen_gr_Infinity_norm_inv Given the QR factors returned by
gen_qr_factor, estimates the infinity
norm of each matrix A-1. Uses the
method developed by Hager (see
reference 5 listed in Section 5.7).

gen_qr_r_infinity_norm_inv Given the QR factors returned by
gen_gr_factor, estimates the infinity
norm of each (R*)-!, where R* is the
block cyclic upper-left corner formed by
discarding any trailing columns of R that
contain zeros on the block cyclic
diagonal.

Deallocation routine:

deallocate_gen_qr Deallocates the processing element
memory required by the above routines.

Memory Allocation and Deallocation

You must call the factorization or restore routine before calling a solver, get-R,
factor application, pivot application, zeroing, diagonal manipulation, or infinity
norm routine. You can follow one call to the factorization routine with multiple
calls to these other routines, thus avoiding the overhead of factoring the same
matrices repeatedly. The deallocation routine deallocates the processing element
memory allocated by the factorization routine and required by the other QR rou-
tines. For more information about these points, refer to the man page at the end
of this section.

QR Factorization

When you call the QR factorization routine and specify no pivoting, each matrix
A is factored into two matrices:

A=QR
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When you call the factorization routine and specify pivoting, each matrix 4 is
factored into three matrices:

A = QRP!

where P is the permutation matrix that corresponds to the pivoting process. The
factors are defined in more detail in Section 5.3.4.

NOTE

Sections 5.3.3 and 5.3.4 contain detailed information about
how the QR routines are implemented. This information may
help you choose optimal values for the nblock (blocking factor)
and back_solve_strategy arguments. However, if you do not
need the detailed descriptions in these sections, the argument
descriptions in the man page will probably provide you with
enough information to choose reasonable values for these argu-

ments.

5.3.3 Householder Algorithm

This section provides more details about the Householder algorithm implem-
ented in the QR factorization and solver routines. For simplicity, the algorithm
is described for the no-pivoting case and without accounting for blocking and
load balancing. For details about the operations performed if you specify pivot-
ing, and the operations performed by the transpose solver routine, see the man
page at the end of this section. For information about blocking and load balanc-
ing, see Section 5.3.4 and Chapter 14.
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NOTE

This section assumes that A and B are real. For complex ma-
trices, replace “orthogonal” with “unitary” and replace “QT”
with “QH.”

The Householder reduction algorithm computes a series of n Householder ma-
trices that, when successively multiplied by the coefficient matrix A4, yield an
upper triangular matrix R. As an example, suppose the coefficient matrix A has
size (4 X 3). First, a Householder transformation H is calculated, such that H;
applied to the first column of A yields a vector that is 0 except for its first compo-
nent. Hj is applied to all the columns of A. Next, a Householder transformation
Hj, is calculated such that Hj preserves the new first column of A and H; applied
to the new second column of A yields a vector that is 0 except for its first and
second components. Hj is applied to all the columns of A. Finally, a Householder
transformation Hj is calculated such that H3 preserves the first 2 columns of 4
and H; applied to the last column of A yields a vector that is 0 except for its first,
second, and third components. (See Figure 15.)

X X X [ X X X ] X" X' X"

X X X X X 0 X' X

X X X 0 X X 0o 0 X"

X X X | | 0 X X | 0 0 0 |
4 H1A HyHyH A

Figure 15. Successive Householder transformations (discounting blocking and
load balancing).
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Each Householder transformation is defined by a corresponding vector. The
transformation associated with the vector v is given by the following formula:

Here the notation < x,y > means the scalar product of the vectors x and y. If x and
y have n components, then

n
<xy> = Y,
i=1

(If x and y are complex, then

n
<xy>= X, AN )

i=1

After n Householder transformations, the upper triangular matrix R has been
computed as R = (H, H),. ... H}) A. Since each H is orthogonal, the product
H, ... H; is also orthogonal, and is defined as QT. The nontrivial portion of Q is
a series of Householder vectors.

Upon return from the factorization routine, the upper triangular portion of A4 is
overwritten by R, and the lower triangular portion of A is overwritten by the
Householder vectors that form the non-trivial portion of Q, as shown in
Figure 16. Specifically, components j +1:m of the j* Houscholder vector are
stored in A(j+1:m, j) for all j less than m. (Bear in mind that this description does
not take blocking and load balancing into effect.)
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n=3 n=3
X X X I1t I12 I13
| X X X o)y m
m=4 m=4
X X X v3)  v;@ 15
1 @ 3
A A

534

194

Figure 16. The upper triangular portion of A is overwritten by R
and the lower triangular portion is overwritten by Householder vectors.

The stored Householder vectors are normalized so that v(1:j-1) = 0 and v(j) = 1
for the j** Householder vector. This normalization makes it possible to store only
the essential part of each Householder vector in the strictly lower triangular por-
tion of A4, leaving room in the upper triangular portion (including the diagonal)
for R.

The QR solver routine applies QT (the n Householder transformations corre-
sponding to the n vectors stored in the strictly lower triangular part of A) to the
right-hand sides that comprise the matrix B. In this way, the linear system AX =
B is transformed to RX = QYB. This upper triangular system is solved by r con-
current back substitutions, where r is the number of right-hand-side vectors. For
each right-hand-side vector b in B, the system Ax = b becomes

x= R1QTp

Again discounting blocking and load balancing, the solver overwrites the first n
rows of the right-hand-side matrix B with the least squares solution to AX = B.
The remaining m - n rows of B are undefined.

Blocking, Load Balancing, and the QR Factors Defined

The QR routines use blocking and load balancing to optimize performance.
Blocking and load balancing are described in detail in the section on computation
of block cyclic permutations in Chapter 14, and in reference 11 listed in Section
5.7. This section discusses the arguments that affect blocking and load balancing
in the QR routines.

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation



NOTE

This section assumes that A and B are real. For complex ma-
trices, replace “orthogonal” with “unitary” and replace “Q™
with “QH.”

Choosing a Blocking Factor

The QR routines require you to supply a blocking factor in the nblock argument.
(The blocking factor is defined in the section on computation of block cyclic
permutations in Chapter 14.) If you specify pivoting, the current implementation
requires that you supply a blocking factor of 1. In other cases, use these
guidelines when choosing an nblock value:

= For typical applications, nblock = 8 is a good choice. An nblock value of
16 may yield faster factorization in some cases.

® nblock should always be < n; nblock values > n use excess time and
especially memory.

= For a single right-hand-side vector, the solver routines will most likely be
faster with a larger value of nblock. On the other hand, the amount of
auxiliary storage used is proportional to nblock, so if memory is tight, a
smaller nblock may be a better choice.

® For optimal performance, ensure that the subgrid length in each dimension
is a multiple of nblock. If that is not possible, choose an nblock value that
is less than or equal to the subgrid lengths in both dimensions.

The QR Factors Defined

Effectively, the gen_gr_factor routine factors a block cyclic permutation, A, of
each matrix A that you supply in A. In a factorization with pivoting, the matrix
A, is factored into '

A: =QR. P!
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where R, is upper triangular, Q. is orthogonal (or unitary, in the complex case),
and P, is the permutation matrix resulting from the pivoting process. In a factor-
ization without pivoting, the factorization is

A = QR
where R, is upper triangular and Q; is orthogonal (or unitary).

The definitions of Q and R in terms of A, and its factors depend on the value you
supply in the gen_qr_factor back_solve_strategy argument. The two possible val-
ues are CMSSL_qr_post_permute and CMSSL_qr_pre_permute. The factor
definitions are provided below for the square case (m = n). Note that the CMSSL_
qr_pre_permute strategy does not work with pivoting, and requires that m = n.
Details about the two back solve strategies are provided in the subsections that
follow.

® Case 1: Post-permutation; no pivoting; m = n
By definition,
A; = Pi"1AP;
where P; is the permutation giving the correspondence between standard
and block cyclic row order, and P; is the permutation giving the corre-
spondence between standard and block cyclic column order. (These
permutations depend on the array size and layout, the partition size, and
the blocking factor you supply.) We therefore have
A= QR= PiAP;!
= P; (Q:R) P!
= P1Q. (P1"'P)) R-P;!
from which we choose to define

Q=PQ.P!
R=PR.P;!

® Case 2: Post-permutation with pivoting; m = n

This case is just like the Case 1 except that we include P, the permutation
matrix that corresponds to the pivoting process. We have

A= QRPl=PiA P
= Py (QRP.™) P!
= P1Q. (P1"\Py) R, (P;"'Py) P,"1P;7!
= (P1Q-P1™) (P1R.PyY) (PP~ 1Py7Y)

from which we choose to define
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Q=PiQ.Pi!
R = PiR.P;]
P-1= p,p,-1py1

= Case 3: Pre-permutation; no pivoting; m = n

In this case, the factorization routine pre-permutes the matrix A to obtain
A= AP,\Py]

By definition, we have
A = PiIA°P,

from which it follows that
Ac = P1AP,

and therefore

A=QR =PiA.Py!
-P1Q.R.P;!
=P1Q: (P1"'Py) R.P;!

from which we choose to define

Q=P1Q:P!
R=PR.P!

In the square case, the gen_lu_get_r routine returns the R factors defined above.
The matrices R-! and R-T, Q, and QT applied by the factor application routines
are derived from the Q and R factors defined above, and the inverses are true
inverses; that is, R"I1R = RR-! = I = QTQ = QQT. (The inverses are also true in
the block cyclic space; that is, R."!R, = R.R."1 = I = Q,TQ, = Q.Q,T)

Finally, the definitions above generalize to the non-square case (m > n) using the
same principles:
» Case 4: Post-permutation; m > n

The matrices R, R-!, and R-T are defined for this case in Figure 17. The
matrices in this figure have the following dimensions, assuming A has
dimensions m X n:

R. nXn
Py mxm
P, nXxn

I (m - n) X (m - n) identity matrix
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R—1=

R Pyl
Py
0
Py Rc_1 0
Pl_1 Pl Pl’l
0 0 1
Z
RT |o p-1]0
Pl Pl—l Pl 2
0 1 0 I

198

Figure 17. Definitions of R, R-1, and R°T in the post-permutation case

with m > n.

R-! and R-T have the following effects:

» When R! operates on a matrix, the first n block cyclic rows are operated
on, and end up in the first n rows. The last m - n block cyclic rows are
permuted into the last m - n rows.

®  When R-T operates on a matrix, the first n rows are operated on and end
up in the first n block cyclic rows. The last m - n rows end up in the last
m - n block cyclic rows.

Summary of Factor Definitions (Square Case)

The factorization routine operates on A with a sequence of block Householder
transformations that result in the matrix R = (P; R, P,~1) in the post-permutation
case, or R = (P, R, P;~!) in the pre-permutation case. The sequence of transfor-
mations, which is orthogonal by construction, is defined as QT. Thus, the
factorization yields

QA = (P; R. P,"}), or A = Q (P; R. P»™!) (post-permutation, no pivoting)
Q™ = (P; R. P;")P1,0r A = Q (P; R. P;"})P-! (post-permutation, pivoting)
QTA = (P; R. P;Y), 0or A = Q (P1 R. P1™}) (pre-permutation, no pivoting)
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where Q = P;Q.P;~! and P-! = P,P.-1p,-1,

When the factorization routine returns, the block cyclic upper triangle of A is
overwritten with (P; R, P,-1) (post-permutation) or (P; R, P;~1) (pre-permuta-
tion). The remaining elements of A are used internally to reconstruct Q.

Figure 18 is a simple example showing the shape of the non-zero entries of (P,
R. Py"1) when A is a (32 X 32) matrix laid out as an (8 X 8) subgrid on each
processing element of a (4 X 4)-processing-element layout. The block size in this
example is 2.

Choosing a Back Solve Strategy

This section provides background information about the two back solve strate-
gies and guidelines for choosing a strategy.

Because R, is permuted by P; and P;, the back substitution process may require
further permutations in order to arrive at the solution to the original linear sys-
tem. The back_solve_strategy argument allows you to determine when these
further permutations occur:

®= The CMSSL_qr_pre_permute strategy causes the factor routine to permute
the columns of A prior to the factorization.

= The CMSSL_qr_post_permute strategy causes the solver routine to per-
mute the rows of the solution after the back substitution is complete.

The CMSSL_gr_post_permute always works; however, your choice of back solve
strategy may affect performance. Follow these guidelines:

= If the matrices A are not square, you must choose CMSSL_qr_post_
permute. Specifying CMSSL_qr_pre_permute with non-square matrices
yields an error.

= If you are specifying pivoting, you must choose CMSSL_qr_post_ permute.
Specifying CMSSL_qr_pre_permute with pivoting yields an error.

= If the matrices A are square, each A has square subgrids, and you are not
pivoting, the permutations are not required and your choice of back solve
strategy has no effect on performance.
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Figure 18. Non-zero entries in (P; R, P;™1) for a (32 x 32) matrix

laid out as an (8 x 8) subgrid on each processing element of a (4 X 4)-processing-element

200

layout. The block size is 2.

= If the matrices A are square but do not have square subgrids, and you are
not pivoting, then use these guidelines:

» If the layouts of A and B coincide (most typically in this context,
this means that the matrix axis extents are exactly n X n for each A
and n X nrhs for each B, and that the layout of processing elements
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is the same for A and B), then to optimize performance, choose the
back solve strategy that moves less data. The two strategies move
the following amounts of data for each instance:

¢ CMSSL_qr_pre_permute moves n? elements (the number
of elements in each matrix A).

¢ CMSSL_gr_post_permute moves nXr; elements, where the
sum is over all calls made to the solve routine after one
call to the factor routine, and r; is the number of right-
hand-side vectors in the ith call to the solve routine.

Therefore, if n? < nXr; or n < Ir;, choose CMSSL_qr_pre_permute;
if n > Lr;, choose CMSSL_gr_post_permute. If » = Lr;, the two strat-
egies are likely to yield approximately the same performance.

s If the layouts of A and B do not coincide, choose CMSSL_qr_post_
permute, which does not move any elements in this case (as
compared with CMSSL_gr_pre_permute, which moves n? elements).

Back Solve Strategy Details

The following descriptions of the two back solve strategies are for readers who
need more details about the permutations. For simplicity, this discussion covers
the no-pivoting case. For details about the operations performed if you specify
pivoting, and the operations performed by the transpose solver routine, see the
man page at the end of this section.

In the following descriptions, bear in mind that

Q = P,Q. P! (both back solve strategies)
QT = P,Q.TP;~! (both back solve strategies)
R = P; R, Py~1 (post-permutation)

R = P; R, P;~1 (pre-permutation)

In the CMSSL_qr_post_permute strategy, the solver routine backsolves the sys-
tem

(P1R PiY)y=(P1QTPI Y b
to yield

y=@1R Py (P1Q P b
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for each right-hand-side vector b in the matrix B. The original system Ax = b then
becomes

(P1Q Py (PLR Py D) x=b

(PLR PyYyx=P1QTP ) b

Py R (P11 P)) Pyl x = (P1QTP1 ") b
(Py Pyl x = (P R Py 1 (P1QTPI7 ) b
x= (P2 Prl)y

If you choose CMSSL_qr_pre_permute when you call gen_qr_factor, the factor
routine multiplies each A on the right with P;P,-! by doing a send to rearrange
the columns before performing the factorization. (If A has square subgrids, then
P; = Py, so this permutation is the identity and no send is performed.) The factor-
ization yields

QTA(P 1P Y) = (P1Q TP ™) A (P1PyY) = (P R P7Y)
Thus, for each right-hand-side vector b in the matrix B, the original system
Ax=b

(P1Q TP ) A PPy 1P P Yy x = (P1Q.TP Y b
is equivalent to

(P1 R P7Y) (P, PrY) x = (P1Q. TP ) b

(P1R Pl x = (P1Q.TP; ) b

x=(Py R Pr"Y) 1 (P1Q.TP1 ) b

In this case, the solver routine produces the desired result without a post-permu-
tation. Finally, note that if A is (m X n) with m > n, then P; is (m X m), and
multiplying A by P; on the right does not make sense. This is why the CMSSL_
qr_pre_permute strategy requires A to be square.
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53.5

5.3.6

Solver Routine Results

Assuming that A is (m X n), when the solver routine returns, the first n rows of
the right-hand-side matrix B are overwritten with the least squares solution to AX
= B. The remaining m - n rows of B are undefined on return.

Numerical Stability

The orthogonalization methods used in the QR factorization have guaranteed sta-
bility; there is no “growth factor” as with Gaussian elimination. Even for
extremely poorly conditioned matrices, the QR factorization routine with no piv-
oting produces small residuals.

However, if the matrix to be factored is truly singular, the pivoting option is rec-
ommended (see Section 5.3.6).

The QR solver performs both a forward solve and a backsolve. The forward solve
is the application of a sequence of (block) Householder transformations, and is
stable (see reference 1 listed in Section 5.7). The backsolve is triangular; for info-
mation on its stability, see reference 8.

The Pivoting Option: Working with lll-Conditioned Systems

To use the QR pivoting option, supply the value CMSSL_column_pivoting (or
CMSSL_column_pivoting_scale; see Section 5.3.7) for the pivoting_strategy ar-
gument when you call gen_qr_factor. (See the man page at the end of this section
for details about the calling sequence.)

Why Use Pivoting?
Pivoting is useful in the following ways:

= ]t allows you to determine the column rank of the matrix A accurately. In
contrast, when you perform the factorization without pivoting, it is rela-
tively easy to misjudge the column rank of A.

= ]t gives you more options for working with ill-conditioned matrices.
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In the current release, using the QR factor and solve routines with pivoting is the
recommended method for working with ill-conditioned matrices.

Determining the Column Rank of the Matrix A

This section describes the advantage of using pivoting in determining the column
rank of the matrix A. Throughout this discussion, a tiny number is a number that
is tiny relative to the norm of the matrix A.

A column of A that is dependent or close to dependent on the previous columns
(indicating that A is ill-conditioned) will appear, during one of the elimination
steps in the factorization process, as a column of zeros or tiny numbers. If
gen_gr_factor encounters such a column and you have specified no pivoting, the
routine either fails or places a zero or tiny number on the diagonal of the corre-
sponding column of R. In fact, a zero or tiny number on the diagonal of R always
means that the corresponding column of A was dependent (or almost dependent,
respectively) on the previous columns. Thus, if R contains columns with zeros
or tiny numbers on the diagonal, you can assume that A is singular or ill-condi-
tioned.

Suppose one wants to determine the column rank of R (which equals the column
rank of A, since Q is orthogonal). When counting the linearly independent col-
umns of R, one strategy might be to discount any column with a zero or tiny
number on the diagonal. But this strategy can be misleading. For example, con-
sider the matrix

-12
-12

a o =
L T T
[ &)

o a0

where e is tiny. The values of e on the diagonal indicate that A (and R) are ill-con-
ditioned. However, if you ignore the columns with e on the diagonal, you
conclude that the matrix has column rank 1, whereas in fact, it has column rank
2 (the first and last columns are linearly independent).

In contrast, when you specify pivoting, each time gen_gr_factor processes a col-
umn, it examines the remaining columns and moves the one with the greatest
vector 2-norm forward (to a lower column position) in the matrix. Therefore,
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columns with zeros or tiny numbers end up in the last column positions of R. In
the above example, if you had specified pivoting, R would be

1 2712 11
212 ¢ ¢
e e

e

[ T N

This time, you would discount the last three columns and correctly conclude that
the column rank is 2.

It is important to note that if R has no zeros or tiny numbers on the diagonal, you
cannot safely conclude that A is well-conditioned. For example, consider the ma-
trix

&R =0
| =00

where e is tiny and u = e1/2 (which is “large™). This matrix has no zeros or tiny
numbers on the diagonal. However, its condition number is on the order of 1/u3
= 1/(¢3?), which is large; thus, the matrix is ill-conditioned.

Strategies for Working with lli-Conditioned Matrices

In most ill-conditioned problems, the dependent columns occur at the end of the
matrix, so that pivoting gains you no special advantage. However, in most cases
you do not know ahead of time whether this condition is true for a given matrix.
Furthermore, in extremely ill-conditioned cases, gen_qr_tactor without pivoting
may fail altogether because of underflow when processing a dependent column.
Therefore, pivoting is a safer strategy when working with matrices that may be
ill-conditioned. However, since pivoting also exacts a performance cost, you
may want to call the factorization routine without pivoting first, as in the follow-
ing strategy:

1. Factor without pivoting:
a. Call gen_gr_factor without pivoting.

b. Call gen_gr_infinity_norm_inv to estimate the infinity norm of A-1;
call gen_infinity_norm to obtain the infinity norm of A; and thus find
the condition number of A.
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c. If A is well-conditioned, proceed with the solve routine. If A is ill-
conditioned, you may still wish to call the solve routine, bearing in
mind that your relative error will be large. Alternatively, try Step 2.

2. Factor with pivoting, if necessary.
a. Call gen_gr_factor with pivoting.

b. Call gen_gr_extract_diag to extract the block cyclic diagonal entries
of R. If there are zeros or tiny numbers at the end of the block cyclic
diagonal, A is ill-conditioned. (Remember that if there are no zeros
or tiny entries at the end of the block cyclic diagonal, you cannot
be sure the matrix is well-conditioned.)

c. Change any tiny entries at the end of the block cyclic diagonal to
Zeros.

d. Call gen_gr_deposit_diag to deposit the modified block cyclic diag-
onal entries back into R.

e. Call gen_gr_r_infinity_norm_inv. This routine estimates the infinity
norm of (R*)~1, where R* is the upper-left corner of R formed by
discarding any trailing columns of R that contain zeros on the block
cyclic diagonal. Find the condition number of R*. If R* is ill-condi-
tioned, you may wish to use gen_qr_extract_diag and gen_qr_
deposit_diag to change the last block cyclic diagonal entries of R*
to zeros and then repeat this step. When you have finally discarded
enough columns to obtain an R* that is well-conditioned, you will
know that you can solve the corresponding portion of your original
problem (by discarding some portions of the right-hand side) with
confidence.

5.3.7 Scaling

The pivoting_strategy argument of gen_qr_tactor allows you to select scaling as
well as pivoting. The values

CMSSL_column_pivoting_scale
CMSSL_no_pivoting_scale

have the same effects as
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CMSSL_column_pivoting
CMSSL_no_pivoting

respectively, except that the first two select scaling while the second two do not.

If you select scaling, the gen_gr_factor routine uses a scaling factor to eliminate
the possibility that ||col]|? yields underflow or overflow, where col is a column
of A used in the elimination process. In particular, gen_gr_factor replaces
(Za;2)12 with S(Z(a;/S)*)1/2, where S is the scaling factor and g; are the elements
of col. The scaling factor S is defined by (|lcolll)!/2 = (max(col))!/2.

Scaling is not usually necessary; it is required only when [|A|[? is close to under-
flow or overflow, for any matrix A within A. (Note that underflow of ||col||? does
not cause a problem if col is a column with zeros or tiny numbers at the end of
the block cyclic diagonal.) Because scaling involves a significant performance
cost, especially in the case of pivoting, you should use it only when necessary.

Saving and Restoring the QR State

The QR factorization routine generates internal state variables required for com-
puting the solution. These variables are not made available as arrays to user
applications because their sizes and contents are CM configuration-dependent.
However, it is sometimes desirable to save the internal state to a file for future
use. The save_gen_qr and restore_gen_gqr routines allow you to save and restore
the internal QR state.

The QR routines allow you to have more than one factorization “active” at a time;
for example, the sequence of calls

setup_X = gen _gr_factor (X, ...)
setup_Y = gen _qr_factor (Y, ...)
call gen gr_solve(B_X, X, setup X, ...)
call gen _qgr_solve(B_Y, Y, setup Y, ...)

is valid. You may, however, want to use save_gen_qr and restore_gen_gr to carry
the internal state over between program runs.

It is not intended that the save and restore routines be used to conserve memory.
The state variables are very small compared to the size of the typical matrix A.
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Solving Linear Systems Using Householder

Transformations

Given a CM array A containing one or more embedded coefficient matrices 4, and a CM
array B containing corresponding embedded right-hand sides B, the routines listed below
use Householder transformations (with or without pivoting) to factor each A4 into two ma-
trices, Q and R, described below; use the QR factors to solve the linear systems AX = B or
ATX = B; and perform related operations.

SYNTAX

Factorization routine:

setup = gen_qr_factor

Save and restore routines:
save_gen_qr

Setup = restore_gen_qr

Solver routines:
gen_gr_solve

gen_qr_solve_tra

Factor application routines:

gen_qr_apply_q
gen_qgr_apply_q_tra
gen_qgr_apply_r_inv

gen_qr_apply_r_inv_tra

208

(A, m, n, row_axis, col_axis, nblock,
pivoting_strategy, back_solve_strategy, ier)

(setup, unit, iostat, ier)

(A, m, n, row_axis, col_axis, nblock,
pivoting_strategy, back_solve_strategy, unit, iostat,
ier)

(B, A, setup, nrhs, ier)

(B, A, setup, nrhs, ier)

(B, A, setup, nrhs, ier)
(B, A, setup, nrhs, ier)
(B, A, setup, nrhs, ier)

(B, A, setup, nrhs, ier)
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Get-R routine:
gen_qr_get_r (B, A, setup, ier)

Pivot application routines:

gen_qr_apply_p (B, A, setup, nrhs, ier)

gen_qr_apply_p_Inv (B, A, setup, nrhs, ier)
Zeroing routine:

gen_qr_zero_rows (B, A, setup, limit, nrhs, ier)

Diagonal manipulation routines:

gen_qr_extract_diag (d, A, setup, ier)
gen_qgr_deposit_diag (A, d, setup, ier)
Infinity norm routines:

gen_qr_infinity_norm_inv  (a, A, setup, ier)

gen_qr_r_infinity_norm_inv (a, A, setup, ier)

Deallocation routine:

deallocate_gen_gqr (setup)

ARGUMENTS

In the descriptions below, A and B refer to the active matrices with which the routines
work. These matrices may be contained (as the upper left-hand submatrices) in larger
matrices within the arrays A and B, respectively. Details are provided below.

Also, throughout these descriptions, Q denotes the conjugate of Q, and the notation
M-T is used for (M-1)T = (MT)-1,

setup Scalar integer variable. Setup ID returned by gen_qr_factor and
restore_gen_qr. When you call any of the other QR routines, you
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ition)

must supply the value returned by the corresponding
gen_qr_factor or restore_gen_gr call.

B CM array of the same data type as A. The instance axes of B must
match those of A in order of declaration and extents. When you
call gen_qr_get_r, A and B must have the same rank, axis extents,
and layout directives. B must be distinct from A.

Solver, Factor Application, Pivot Application, and Zeroing
Routines. When you call one of the QR solver, factor application,
pivot application, or zeroing routines, B must contain one or more
instances of B, where each B consists of one or more right-
hand-side vectors. The following restrictions hold:

» If each instance B within B consists of only one right-
hand-side vector (nrhs = 1), you may represent B in either
of the following ways:

® It may have rank 2 with number of columns = 1.
In this case, each B has dimensions m X 1 (and
may consist of the upper left-hand m X 1 elements
of a larger matrix). The rows of each B must be
counted by axis row_axis (from the gen_gr_factor
call); the single column must be counted by axis
col_axis.

= It may have rank 1. In this case, each B has di-
mension m (and may consist of the first m
elements of a larger vector). The elements of each
B must be counted by axis row_axis (if row_axis
< col_axis) or by axis (row_axis - 1) (if col_axis
< row_axis). For an example, see the Notes sec-
tion.

® If each B within B consists of multiple right-hand-side
vectors (nrhs > 1), then each B has dimensions m X nrhs,
and may consist of the upper left-hand m X nrhs elements
of a larger matrix. The rows and columns of B must be
counted by axes row_axis and col_axis, respectively.

Upon successful completion of gen_gr_solve, the first n rows of
each matrix B are overwritten with the least squares solution to AX
= B. The remaining m - n rows of B are undefined.
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With m > n, the system ATX = B is underdetermined. Upon
successful completion of gen_qr_solve_tra, each B[1:m] is
overwritten with the minimal 2-norm solution to this
underdetermined system.

Upon completion of a factor application routine, each B within B
is overwritten by the product QB, OB, Q'B, Q B, R"1B, or R°TB.

Upon completion of a pivot application routine, each B within B
is overwritten by the product PB or P-1B, where P is the
permutation matrix that corresponds to the pivoting process.

The gen_qgr_zero_rows routine zeroes the last m - limit block
cyclic rows of each two-dimensional matrix defined by axes
row_axis and col_axis of B.

Get-R Routine. When you call gen_gr_get_r, B must have the
same rank, axis extents, layout directives, and data type as A.
Upon completion, each m X n matrix B within B contains the
factor R of the corresponding matrix A within A. (R is a block
cyclic upper triangle, as described below.) The rows and columns
of each B are represented by row_axis and col_axis, respectively.
These axes may have extents greater than m and n, respectively;
that is, each B may be contained (as the upper left-hand m X nrhs
elements) in a larger matrix within B.

d CM array of the same rank and type as A. Contains one or more
instances of a vector of length greater than or equal to n; these
vectors must lie along axis row_axis. Axis col_axis must have
extent 1. All remaining (instance) axes of d must match, in order
of declaration and extents, the instance axes of A. Thus, each
matrix A embedded in A corresponds to a vector embedded in d.

Upon return from gen_qr_extract_diag, the first n elements of each
vector within d are the block cyclic diagonal entries of the R factor
of the corresponding A within A.

When you call gen_qr_deposit_diag, you must supply in the first
n elements of each vector within ds the values you wish to deposit
into the block cyclic diagonal of the R factor of the corresponding
A within A.

a Real CM array with the same rank and precision as A. Axes
row_axis and col_axis must have extent 1. Thus, each matrix A
embedded in A corresponds to a real number in a.
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Upon successful completion of gen_qr_infinity_norm_inv, the
estimated infinity norm of the inverse of each matrix A within A
is placed in the corresponding position of a.

Upon successful completion of gen_gr_r_infinity_norm_inv, the
estimated infinity norm of the inverse of each R* within A is
placed in the corresponding position of a. The supplied A contains
the R factors of the matrices A, returned by gen_qr_ factor. R* is
the block cyclic upper-left corner of R formed by discarding any
trailing columns of R that contain zeros on the block cyclic
diagonal.

Real or complex CM array of rank greater than or equal to 2. Must
be distinct from B.

Factor Routine. When you call gen_gr_factor, A should contain
one or more instances of a coefficient matrix A to be factored.
Each A is assumed to be dense with dimensions m X n, with rows
counted by axis row_axis and columns counted by axis col_axis.
These axes may have extents greater than m and n, respectively;
that is, each A may be contained (as the upper left-hand m X n
elements) in a larger matrix within A. Upon successful completion
of gen_qr_factor, the block cyclic upper triangle of A is
overwritten by R. The remaining elements of A are used internally
to reconstruct Q.

All Other Routines. When you call any of the other QR routines,
A must have the same data type, rank, and shape (axis extents and
layout directives, including orderings and weights) as the original
A that was factored. You must also be using the same partition size
as when you originally factored A. Supply in A the QR factors
returned in A by gen_qgr_factor.

Scalar integer variable. The number of rows in each matrix A
embedded in A. Must be greater than or equal to n.

If you intend to call gen_gr_infinity_norm_inv, m must equal n,
since each matrix A within A must be invertible, and therefore
square.

Scalar integer variable. The number of columns in each matrix A
embedded in A. Must be less than or equal to m.

If you intend to call gen_gr_infinity_norm_inv, m must equal n,
since each matrix A within A must be invertible, and therefore
square.
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Scalar integer variable. The number of columns of each
right-hand side B within B. Must be greater than or equal to 1.

Scalar integer variable. The axis that counts the rows of the
matrices A embedded in A. The extent of this axis must be at least
m; row_axis must be in the range 1 through the rank of A,
inclusive; and row_axis and col_axis must not be equal.

Scalar integer variable. The axis that counts the columns of the
matrices A embedded in A. The extent of this axis must be at least
n; col_axis must be in the range 1 through the rank of A, inclusive;
and row_axis and col_axis must not be equal.

Scalar integer variable. Blocking factor. If you specify pivoting
(see pivoting_strategy, below), you must supply 1 for nblock.
Otherwise, use these guidelines when choosing an nblock value:

* For typical applications, nblock = 8 is a good choice. An
nblock value of 16 may yield faster factorization in some
cases.

»  nblock should always be less than or equal to n; nblock
values > n use excess time and especially memory.

=  For a single right-hand-side vector, the solver routines
will most likely be faster with a larger value of nblock. On
the other hand, the amount of auxiliary storage used is
proportional to nblock, so if memory is tight, a smaller
nblock may be a better choice.

=  For optimal performance, ensure that the subgrid length
in each dimension is a multiple of nblock. If that is not
possible, choose an nblock value that is less than or equal
to the subgrid lengths in both dimensions.

Scalar integer variable specifying the pivoting strategy to be used.

Specify one of the following values:
CMSSL_no_pivoting No pivoting, no scaling
CMSSL_no_pivoting_scale No pivoting, scaling
CMSSL_column_pivoting Column pivoting, no scaling

CMSSL_column_pivoting_scale Column pivoting, scaling

For a discussion of pivoting, see Section 5.3.6. For information
about scaling, see the Notes section below.
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back_solve_strategy

limit

unit

iostat

ier

Scalar integer variable. Specifies the back substitution strategy. A
value of CMSSL_qr_post_permute is always acceptable; the value
CMSSL_gr_pre_permute is used to enhance performance in special
cases, as described in Section 5.3.4. ‘

A value of CMSSL_qgr_post_permute indicates that the rows of the
solution are to be permuted by the gen_gr_solve routine after the
backsolve is completed. A value of CMSSL_qr_pre_permute
specifies that the columns of the matrices A are to be permuted by
gen_qr_factor prior to the factorization.

CMSSL_gr_pre_permute requires that m = n, and that pivoting_
Strategy = CMSSL_no_pivoting.

Scalar integer variable. Must be in the range from 1 through m.
Determines how many rows within each two-dimensional matrix
defined by row_axis and col_axis of B will be changed to 0 by
gen_qr_zero_rows. This routine zeroes the last m - limit block
cyclic rows of each two-dimensional matrix defined by axes
row_axis and col_axis of B.

Scalar integer. Valid unit number associated with the file to or
from which the QR state is to be written or read. Use the CM
Fortran utility CMF_FILE_OPEN to associate a file with a unit
number (or use the equivalent utility to associate a device or
socket with a unit number). The save_gen_qgr and restore_gen_gr
calls write and read data using CMF_CM_ARRAY_TO_FILE_SO and
CMF_CM_ARRAY_FROM_FILE_SO, respectively. You must rewind
the file before calling restore_gen_gqr.

Scalar integer variable. Upon return, contains the status of the I/O
operation. If ier = 0, iostat contains the number of bytes written
or read. For the meanings of other iostat codes, refer to the
descriptions of CMF_CM_ARRAY_TO_FILE_SO (for save_gen_qr)
and CMF_CM_ARRAY_FROM_FILE_SO (for restore_gen_gr) in the
CM Fortran documentation set.

Scalar integer variable. Return code; set to 0 upon successful
return.

Values between -1 and -9, inclusive, indicate problems with one
or more of the CM arrays containing matrices in any of the QR
calls:
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-1 Invalid array home. The array must be a CM array.

-2 Invalid rank; must be > 2.

-3 Invalid column extent; must be > m.

-4 Invalid row extent; must be > n.

-9 Invalid data type; must be real or complex (single-
or double-precision).

Values that are multiples of -10 indicate problems with non-array
arguments:

-10  System failed to allocate the setup object, setup.

-20  m, n, or nrhs is invalid; all must be > 0 and m must
be greater than or equal to n.

-30  row_axis or col_axis is invalid. 1 < row_axis,
col_axis < rank (A) must be true, and row_axis and
col_axis must not be equal.

-40  nblock is invalid. It must be greater than or equal to
1, or equal to 1 if you specify
CMSSL_column_pivoting.

-50  pivoting_strategy is invalid; must be
CMSSL_column_pivoting, CMSSL _no_pivoting,
CMSSL_column_pivoting_scale, or
CMSSL_no_pivoting_scale.

-60  nrhs is invalid.

-70  back_solve_strategy is invalid; must be
CMSSL_pre_permute or CMSSL_post_permute.

-80  You specified an invalid combination of
pivoting_strategy, back_solve_strategy, andfor m
not equal to n; or you specified m not equal to n in the
factorization call associated with this call to
gen_qr_infinity_norm_inv.

-100 setup is invalid. (You did not supply the value
returned by gen_gr_factor.)

Values between -102 and -108, inclusive, indicate problems with
the consistency of A or B in one of the QR routines following a
factorization call:

-102 The rank of A or B is invalid (must be > 2 for A or
> 1 for B), or is inconsistent with the rank of A
in the factorization call.

-105 The extents of the instance axes of A or B are
inconsistent with those of A in the factorization call.

-106 B must have the same layout directives as A when
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(

you call gen_qr_get_r.
-108 The data type of A or B is inconsistent with that of A
in the factorization call,

The save_gen_qr and restore_gen_gr routines return the following
value if they encounter an J/O error:

-200 YO error. See the value of iostat for more information.

DESCRIPTION

Given a CM array A containing one or more instances of a coefficient matrix 4, and a
CM array B containing corresponding instances of a right-hand-side B, the following
routines and operations are provided:

Factorization routine:
gen_qr_factor Uses Householder transformations to factor
each matrix instance A into two matrices, Q
and R, (or, if pivoting is specified, three ma- .
trices, Q, R, and P-1), described below. ﬁ }

Save and restore routines:

save_gen_qr Saves internal information about the QR fac-
tors in a file.
restore_gen_qr Loads internal information about the QR fac-
tors from a file.
Solver routines:
gen_gr_solve Uses the QR factors returned by gen_qr_
factor to solve the system(s) AX = B.
gen_qr_solve_tra Uses the QR factors returned by gen_gqr_
factor to solve the system(s) ATX = B.
Factor application routines:
gen_qgr_apply_q Given the QR factors returned by gen_qr_

factor, applies Q (or Q, in the case of complex
data) to B for each instance.
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gen_qr_apply_q_tra

gen_qr_apply_r_inv

gen_qr_apply_r_inv_tra

Get-R routine:

gen_qr_get_r

Pivot application routines:

gen_qr_apply_p

gen_qr_apply_p_inv

Zeroing routine:

gen_qr_zero_rows

Diagonal manipulation routines:

gen_qgr_extract_dlag
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Given the QR factors returned by gen_qr_
factor, applies QT (or QY, in the case of com-
plex data) to B for each instance. Note that
since Q is orthogonal (or unitary, in the com-
plex case), QH = QL.

Given the QR factors returned by gen_gr_
factor, applies R-! to B for each instance.

Given the QR factors returned by gen_qr_
factor, applies R-T to B for each instance.

Given the QR factors returned by gen_qr_
factor, produces the factor R for each in-
stance.

Given the QR factors returned by gen_qr_
factor, applies P to B for each instance, where
P is the permutation matrix that corresponds
to the pivoting process. Use this routine only
if you specified pivoting in the associated
call to gen_gr_factor.

Given the QR factors returned by gen_gr_
factor, applies P-! = PT to B for each in-
stance. Use this routine only if you specified
pivoting in the associated call to gen_qr_fac-
tor.

Zeroes the last m - limit block cyclic rows of
each two-dimensional matrix defined by
row_axis and col_axis of B.

Given the QR factors returned by gen_qr_
factor, returns the block cyclic diagonal en-
tries of R for each instance.
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gen_qr_deposit_diag Given the QR factors returned by gen_qr_
factor, overwrites the block cyclic diagonal
entries of each instance of R with values you

supply.

Infinity norm routines:

gen_gr_infinity_norm_inv  Given the QR factors returned by gen_qr_
factor, estimates the infinity norm of each
matrix A-1.

gen_qr_r_infinity_norm_inv Given the QR factors returned by gen_qr_
factor, estimates the infinity norm of each
(R*"1, where R* is the block cyclic upper-
left corner formed by discarding any trailing
columns of R that contain zeros on the block
cyclic diagonal.

Deallocation routine:

deallocate_gen_qr Deallocates the processing element memory
allocated by the factorization routine.

Memory Allocation and Deallocation. You must call either gen_qr_factor or
restore_gen_gr before calling save_gen_gr, the get-R routine, or a solver routine, factor
application, pivot application, zeroing, diagonal manipulation, or infinity norm rou-
tine. You can follow one call to gen_gqr_factor or restore_gen_qr with multiple calls to
these other routines, thus avoiding the overhead of factoring the same matrices repeat-
edly.

The deallocate_gen_gr routine deallocates the processing element memory allocated
by the factorization routine and required by the other QR routines. Be sure to call
deallocate_gen_qr when you have finished working with a set of QR factors.

You can work with more than one set of QR factors at a time by calling gen_gr_factor or
restore_gen_qr more than once without calling deallocate_gen_qr. However, repeated
calls to gen_gr_factor or restore_gen_qr without deallocation can cause you to run out
of memory.

Factorization Routine. The gen_qgr_tactor routine uses Householder transformations
to factor each matrix A embedded in A. If you specify CMSSL_no_pivoting in the
pivoting_strategy argument, each A is factored into two matrices:

A=QR
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R

If you specify CMSSL_column_pivoting, each A is factored into three matrices:
A= QRP!

The factors are defined in the section called The QR Factors Defined, below. Upon
completion of gen_gr_factor, the block cyclic upper triangle of A is overwritten by R.
The remaining elements of A are used internally to reconstruct Q.

When you call the get-R routine or a solver, factor application, pivot application, zero-
ing, diagonal manipulation, or infinity norm routine, you must supply the same A that
was returned by gen_gqr_factor.

Save and Restore Routines. You may save internal information about the QR factors
in a file for use in later calls to the other QR routines. To save the QR information, call
save_gen_qr after the factorization is complete but before deallocating the storage
space. To restore the QR information, rewind the file and call restore_gen_gr; this call
is typically followed by calls to the other QR routines.

Solver Routine. Given the values returned in A by gen_gr_factor, the gen_gqr_ solve
routine solves one or more instances of the system

AX =B

where A and B are corresponding instances within A and B, respectively. If the size of
each A is (m X n), and the size of each Bis (m X nrhs), then upon successful return from
gen_gr_solve, the first n rows of each B are overwritten with the least squares solution
to AX = B. The remaining m - n rows of B are undefined.

Steps Performed by Solver Routine. If you specified no pivoting, since A = QR, AX
= Bis equivalent to X = R-1QTB. Therefore, to solve AX = B, the gen_qr_solve routine
performs the following steps:

1. Apply QT to B.
2. Apply R to QTB.
To perform these steps yourself, you would

1. Call gen_gr_apply_q_tra to apply each QT to the corresponding right-hand
side, B.

2. Call gen_qr_apply_r_inv to apply R-! to the result from Step 1.
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If you specified pivoting, since A = QRP-1, AX = B is equivalent to X = PR-1QTB.
Therefore, to solve AX = B, the gen_qr_solve routine performs the following steps:

1. Apply QT to B.
2. Apply R! to QTB.
3. Apply Pto R'1QTB.
To perform these steps yourself, you would

1. Call gen_qr_apply_q tra to apply each QT to the corresponding right-hand
side, B.
2. Call gen_gr_apply_r_Inv to apply R-! to the result from Step 1.

3. Call gen_gr_apply_p to apply P to the result from Step 2.

Transpose Solver Routine. The gen_gr_solve_tra routine solves one or more in-
stances of the system

ATX =B

where A and B are corresponding instances within A and B, respectively. Specifically,
the first n elements of a column of B give the right-hand sides for a system

ATX[1:m] = B[1:n]

With m > n, this is an underdetermined system. Upon completion of gen_gr_solve_tra,
each B[1:m] is overwritten with the minimal 2-norm solution (not to be confused with
the least squares solution) to this underdetermined system.

Steps Performed by Transpose Solver Routine. If you specified no pivoting, since
A = QR, ATX = B is equivalent to X = QR-TB. Therefore, to solve ATX = B, the gen_
qr_solve routine performs the following steps:

1. Apply R Tto B.
2. Apply Qto RTB.
To perform these steps yourself, you would

1. Call gen_gr_apply_r_inv to apply each RT to the corresponding right-hand
side, B.
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2. Call gen_qr_zero_rows to zero the last m - n block cyclic rows of each two-
dimensional matrix defined by row_axis and col_axis of the result from Step
1. (Note: Step 2 is not required if the last m - n block cyclic rows of each B
were set to zero prior to Step 1.)

3. Call gen_gr_apply_q to apply Q to the result from Step 2.

Step 2 is required so that inactive data in the last m - n rows of the right-hand-sides B
does not affect the solution. This zeroing is required only when you are solving ATX =
B, not when you are solving AX = B.

If you specified pivoting, since A = QRP-1, ATX = B is equivalent to X = QR-TP-1B.
Therefore, to solve ATX = B, the gen_qr_solve_tra routine performs the following
steps:

1. Apply P-1to B.
2. Apply RTto P-1B.
3. Apply Qto R'TP-1B.
To perform these steps yourself, you would

1. Call gen_qgr_apply_p_inv to apply each P-! to the corresponding right-hand
side, B.

2. Call gen_qr_apply_r_inv_tra to apply R°T to the result from Step 1.

3. Call gen_qr_zero_rows to zero the last m - n block cyclic rows of each two-di-
mensional matrix defined by row_axis and col_axis of the result from Step 2.
(Note: Step 3 is not required if the last m ~ n block cyclic rows of each B were
set to zero prior to Step 1.)

4. Call gen_qr_apply_q to apply Q to the result from Step 3.

Factor Application Routines. The gen_qr_apply_q, gen_qr_apply_q_tra, gen_qr_
apply_r_inv, and gen_qr_apply_r_inv_tra routines allow you to apply matrices derived
from the QR factors to arbitrary matrices or vectors B contained in B. Upon completion
of the routine, each B in B is overwritten with the specified product (QB, OB, QTB,
QTB, R1B, or R°"TB). Thus, these routines use the factors produced by the QR factor-
ization routine to solve triangular systems of the form RX=B and RTX=B and
trapezoidal systems of the form QX=B or QTX=B.

To apply R to an arbitrary matrix or vector B, use the gen_qr_get_r routine to obtain R,
and then perform the multiplication explicitly. To apply RT to an arbitrary matrix or
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vector B, either transpose R to obtain RT, or use the fact that RTB = (BTR)T; thus, apply
BT to R and transpose the result. If B is a vector, transposing B and BTR (which is also a
vector) is much less costly than transposing R would be.

Get-R Routine. The gen_qr_get_r routine provides access to the R factors of the coeffi-
cient matrices A. Upon completion, each B within B contains the factor R of the
corresponding coefficient matrix A within A. (Note that R is a block cyclic upper
triangle.) The rows and columns of each B are represented by the same axes that de-
fined the rows and columns of the matrices A within A in the gen_gr_factor call.

Pivot Application Routines. The gen_qr_apply_p and gen_gr_apply_p_inv routines
allow you to apply the permutation matrix P that corresponds to the pivoting process,
and its transpose PT = P-1, to arbitrary matrices or vectors B contained in B. Upon
completion of gen_gr_apply_p, each B within B is overwritten by the product PB.
Upon completion of gen_gqr_apply_p_inv, each B within B is overwritten by the product
P-1B. These routines are useful if you want to perform separately the permutations that
the solver routines perform when pivoting is specified, as described above. Use these
routines only if you specified pivoting in the associated call to gen_gqr_factor.

Zeroing Routines. The gen_gr_zero_rows routine zeroes the last m - limit block cyclic
rows of each two-dimensional matrix defined by row_axis and col_axis of B. This rou-
tine is useful if you want to perform separately the zeroing that the transpose solver
routine performs, as described above.

Extract and Deposit Diagonal Routines. The gen_gr_extract_diag routine returns in
d the block cyclic diagonal entries of the factor R of each matrix A within A. The
gen_gr_deposit_diag routine overwrites the block cyclic diagonal entries of each R
with values you supply in d. These routines are useful in working with matrices that
may be ill-conditioned.

Infinity Norm Routines. Given the QR factors returned by gen_gr_factor, the gen_qr_
infinity_norm_inv routine estimates the infinity norm of each matrix A-1. Upon succes-
sful completion of gen_qr_infinity_norm_inv, the infinity norm of each A-! is placed in
the position of a corresponding to A.

The gen_gr_r_infinity_norm_inv routine estimates the infinity norm of each (R®H1,
where R* is the block cyclic upper-left corner of R formed by discarding any trailing
columns of R that contain zeros on the block cyclic diagonal. This routine is useful in
working with matrices that may be ill-conditioned. Upon successful completion of
gen_qr_r_infinity_norm_inv, the infinity norm of each (R*)-! is placed in the position of
a corresponding to the matrix A of which R is a factor.
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The infinity norm of a matrix M, denoted here by || M ||, is defined by

| Ml = Ml || Mx [le

X ||oo= 1

where the infinity norm of a vector, || x ||, is defined as the maximum of the absolute
values of the vector components:

I xlo = ml;mh’«-l

The infinity-norm condition number of a matrix M is equal to the product of || M |l
and || M1 ||c.

The QR Factors Defined (Square Case). The following definitions apply to the
square case (m = n). For information about the non-square case, see Section 5.3.4.
Effectively, the gen_qr_factor routine factors a block cyclic permutation, A;, of each
matrix A that you supply in A. In a factorization with pivoting, the matrix A, is factored
into

Ac =QcR Pc!
where R, is upper triangular, Q, is orthogonal (or unitary, in the complex case), and P,

is the permutation matrix resulting from the pivoting process. In a factorization with-
out pivoting, the factorization is

Ac = QR
where R, is upper triangular and Q, is orthogonal (or unitary).

The definitions of Q and R in terms of A, and its factors depend on the value you sup-
ply in the gen_qgr_tactor back_solve_strategy argument. The two possible values are
CMSSL_qr_post_permute and CMSSL_qr_pre_permute. The factor definitions are pro-
vided below for the square case (m = n). Note that the CMSSL_qgr_pre_permute strategy
does not work with pivoting, and requires that m = n.

®  Case 1: Post-permutation; no pivoting; m = n
By definition,
A. = Pyl4AP,

where P, is the permutation giving the correspondence between standard and
block cyclic row order, and P; is the permutation giving the correspondence
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between standard and block cyclic column order. (These permutations depend
on the array size and layout, the partition size, and the blocking factor you
supply.) We therefore have

A= QR = PAP!

P (Q:R;) Py7!

P1Q; (P1"1Py) R.Py!
from which we choose to define

Q=PQ.P!
R=PiR.P;"!

Case 2: Post-permutation with pivoting; m = n

This case is just like the Case 1 except that we include P, the permutation ma-
trix that corresponds to the pivoting process. We have

A= QRPl = PPy
= P (Q:RP Y Pyl
= P1Q. (P1"'P)) R. (P"1Pp) P."1Py71
= (P1Q:P1l) (PyR.PyY) (PoP1Po7Y)
from which we choose to define
Q= PiQ.P;!
R=PR.P;!

P1=p,pP.-1p,-1

Case 3: Pre-permutation; no pivoting; m = n

In this case, the factorization routine pre-permutes the matrix A to obtain
A"=AP\Py-!

By definition, we have
A =PlA'P,

from which it follows that
A; = P17 1AP,

and therefore

A= QR=P1A P!
-P1Q:R.P;™!
=P1Q. (P171Py) R.Py!

from which we choose to define
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Q = P1Q.P’!
R=PRP!

In the square case, the gen_lu_get_r routine returns the R factors defined above. The
matrices R-! and R"T, Q, and QT applied by the factor application routines are derived
from the Q and R factors defined above, and the inverses are true inverses; that is, RIR
= RR-! = I = QTQ = QQT. (The inverses are also true in the block cyclic space; that is,
RR = RR1=1=Q.Q = Q.Q.T)

The definitions above generalize to the non-square case (m > n) using the same prin-
ciples.

NOTES

NaNs and Infinities. As mentioned above, the matrices A and B may be contained (as
the upper left-hand submatrices) in larger matrices within the arrays A and B, respec-
tively. In this case, if there are NaNs or infinities in the larger matrix outside of 4 or B,
it is possible that other locations outside of A or B could become NaNs or infinities as. .-
well.

Distinct Variables. The input CM arrays A and B must be distinct variables.

Include the CMSSL Header File. The gen_gr_factor routine uses symbolic constants.
Therefore, you must include the line

INCLUDE ' /usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls this routine. This file declares the types of
the CMSSL functions and symbolic constants.

Saving and Restoring the QR State. If you want to save the internal state in one
program run and restore it in a different run, you must save the array of factored ma-
trices in a file in addition to saving the internal state using save_gen_qr. Be sure to save
the array in a different file than that used for saving the state. When you read the array
back into memory prior to resforing the internal state, you must use the same partition
size as when you originally performed the factorization; and the restored array must
have exactly the same shape (axis extents and layout directives, including orderings
and weights) as when you saved it.

Nondegerieracy Required. Each matrix A within A must have a column space of rank
n when you call one of the QR solver routines without pivoting.
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Rank of B. The following example illustrates the options for defining the rank of B.
Suppose A, n, m, row_axis, and col_axis are defined as follows:

A (5, 10,5)
m=n=35
row_axis = 1
col_axis =3

and each B in B is a single vector. You may define B in either of the two following
(equivalent) ways:

B (5,10, 1)
B (5, 10)

On the other hand, if you define

A (5,10,5)
m=n=35
row_axis = 3
col_axis =1

then the possibilities for B are as follows: Q» |
B (1, 10, 5)
B (10, 5)

Performance. Performance improves for larger subgrid sizes (and therefore depends
upon the layout of A). For information on subgrids, refer to the CM Fortran documen-
tation set.

To optimize performance, follow these guidelines:

*  Ensure that the subgrid length in each dimension is a multiple of nblock. If that
is not possible, choose an nblock value that is less than or equal to the subgrid
lengths in both dimensions.

" Lay out A so that the subgrid sizes along axes row_axis and col_axis differ
from one another by no more than a factor of 4 or 5.

®  Use axis extents exactly equal to m X n for the matrices A and m X nrhs for the
matrices B. Use the same processing element layout for the arrays A and B.

Scaling. The pivoting_strategy values CMSSL_column_pivoting_scale and CMSSL_
no_pivoting_scale have the same effects as CMSSL_column_pivoting and CMSSL_no_ €
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pivoting, respectively, except that the first two select scaling while the second two do
not.

If you select scaling, gen_lu_factor uses a scaling factor to eliminate the possibility that
licol]? yields underflow or overflow, where col is a column of A used in the elimination
process. In particular, gen_lu_tactor replaces (£4;2)/2 with S(X(a;/S)2)!/2, where § is
the scaling factor and g; are the elements of col. The scaling factor S is defined by
(llcolles)? = (max(col))'/2,

Scaling is not usually necessary; it is required only when ||4][? is close to underflow or
overflow, for any matrix A within A. (Note that underflow of |icol]|? does not cause a
problem if col is a column with zeros or tiny numbers at the end of the block cyclic
diagonal.) Because scaling involves a significant performance cost, especially in the
case of pivoting, you should use it only when necessary.

Numerical Complexity. If the matrices A have dimensions (m X n), the matrices B
have nrhs right-hand sides, and 7 is the number of instances (the product of all axis
extents except axes row_axis and col_axis), then:

* The QR factorization routine requires approximately 2n2(m - n/3)I floating-
point operations for real operands and 8n2(m - n/3)I floating-point operations
for complex operands.

® The QR solver routines require approximately nrhs * n(4m - n)I floating-point
operations for real operands and 4nrhs * n(4m - n)I floating-point operations
for complex operands.

Performance Cost of Pivoting. The factorization routine is approximately twice as
slow with pivoting than without. (Almost half the performance cost results from the
fact that pivoting requires a block size of 1.) These performance figures are closely tied
to the current implementation, and may change in future releases.
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EXAMPLES

Sample CM Fortran code that uses the routines described above can be found on-line
in the subdirectories

householder/cmf/
and
infinity-norm/cmf/

of a CMSSL examples directory whose location is site-specific.
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5.4 Matrix Inversion and

5.4.1

the Gauss-Jordan System Solver

The matrix inversion routine, gen_gj_Iinvert, and the Gauss-Jordan solver routine,
gen_gj_solve, both use the same variant of the Gauss-Jordan algorithm.

The Gauss-Jordan algorithm requires pivoting if the system is not symmetric
positive definite. The gen_gj_invert and gen_gj_solve routines support two pivot-
ing strategies (partial and total pivoting), described in the context of the inversion
routine, below.

Matrix Inversion

Conceptually, the inversion procedure progressively transforms the original ma-
trix A into the identity matrix, I, while progressively transforming the identity
matrix into the solution — the inverse of the original matrix, A~/. Figure 19
shows a simplified view of this process. It ignores the details that are introduced
by permuting rows and columns and by inverting A in place.

— kth jteration = 1

Figure 19. Matrix A becomes I while I becomes A-1,

The pivoting strategy you specify when you call the inversion routine determines
the size of the search space for the pivot, as follows:

= If you choose partial pivoting, the pivot element is chosen from the pivot
row, and columns are (in effect) permuted. (This is a variant of the conven-
tional partial pivoting method, in which the pivot element is chosen from
the pivot column.)
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= If you choose total pivoting, the pivot element is chosen from a submatrix
and both rows and columns are permuted.

These strategies are illustrated in the next two figures. As in Figure 19, row and
column permutations and in-place inversion are ignored.

With partial pivoting, the pivot search is conducted along the pivot row.
Figure 20 shows the k iteration. The pivot search is conducted along the kth
row; previous iterations have begun to replace the principal diagonal of A with
1s and successive columns with Os. The partial pivot search determines the maxi-
mum value for row k.

kth jteration

Figure 20. Partial pivoting searches pivot row of A.

With total pivoting, the pivot search is conducted within the submatrix below and
to the right of the pivot element, inclusive. Figure 21 illustrates this case.

kth jteration

A=1 I= A1

Figure 21. Total pivoting searches lower right-hand submatrix of A.
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The total pivoting strategy is numerically more stable but slower than the partial
pivoting strategy. For an explanation of the difference in stability, see the works
by Golub and Van Loan and by Wilkinson listed in Section 5.7.

At each pivoting iteration, this variant of the algorithm subtracts multiples of the
pivot row from the rows above as well as from the rows below the pivot row. As
a result, the upper triangular matrix is brought to zero along with the lower trian-
gular matrix. This method is different from the Gaussian elimination method,
which subtracts multiples of the pivot row from only the rows below it, and thus
does not zero the upper triangular matrix. Note that the original matrix is never
actually replaced by the identity matrix; the space that would otherwise be
“wasted” by 1s and Os is filled with the accumulated inverse solution. The inver-
sion result is thus efficiently returned in place.

The Gauss-Jordan Solver

The gen_gj_solve routine uses the same algorithm and pivoting strategies as the
gen_gj_invert routine.

Stability and Performance

The variant of the Gauss-Jordan algorithm implemented in the CMSSL (with row
pivoting instead of the usual column pivoting) has been shown to be conditional-
ly stable in the following sense: its residual is about as small as the residual from
standard Gaussian elimination with column pivoting, as long as the matrix is well
conditioned and pivot growth is moderate. For ill-conditioned matrices, this vari-
ant fails about as often as Gaussian elimination. For further details, see Dekker
and Hoffman, listed in Section 5.7.

If the system of equations is known to be poorly conditioned or the condition of
the system is unknown, the LU routines are recommended with respect to stabil-
ity. The LU factor and solve routines may yield better performance than
gen_gj_solve; and using the LU factor and solve routines to solve AX = I yields
significantly better performance than using gen_gj_invert to invert a matrix.

The CMSSL_total_pivoting method of pivoting is more numerically stable, but
slower than the CMSSL _partial_pivoting method.
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Matrix Inversion

This function inverts a matrix in place, using a variant of the Gauss-Jordan algorithm. The
data type of the source array must be either real or complex.

SYNTAX

pivot_min = gen_g|_Invert (A, size, pivoting_strategy, ier)

ARGUMENTS

232

A

size

pivoting_strategy

ier

2-dimensional CM array of type real or complex. Contains, and
may be larger than, the square matrix to be inverted. Must be of
size (size, size) or larger.

Upon successful completion, the data in the upper left-hand (size,
size) area of A is overwritten with the inverted matrix.

Scalar integer greater than 0. The number of rows (or columns) in
the matrix to be inverted.

Scalar integer representing the pivoting strategy used. Value must
be one of the following symbolic constants (or integer
equivalent):

CMSSL_partial_pivoting (0)
Modified partial pivoting. Column pivoting, where the pivot is
chosen from the pivot row; columns are, in effect, permuted.

CMSSL_total_pivoting (1)

Conventional total pivoting, where the pivot is chosen from the
submatrix below and to the right of the pivot element; both
columns and rows are permuted.

Error code. Scalar integer variable set to 0 if the routine succeeds,
and to 1 otherwise. A value of 1 indicates either that one or more
arguments were incorrect (for example, size = 0), or that a
floating-point exception occurred (indicating that the matrix is
singular or ill-conditioned).
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RETURNED VALUE
pivot_min Real double-precision scalar variable. The magnitude of the
smallest pivot used. A very small pivot is evidence that the matrix
is close to singular (non-invertible). If an error or a floating-point
exception occurs, the routine returns a double-precision zero and
sets ier to 1.
DESCRIPTION

The gen_gj_Invert routine inverts a (size X size) real or complex matrix in place, using a
rehabilitated Gauss-Jordan algorithm. If the matrix A is smaller than its containing
array, A, then the remainder of the values in A are left untouched, as shown in
Figure 22.

size

A within A A1 within A

Figure 22. Matrix A is inverted; the rest of A is unchanged.

NOTES

Include the CMSSL Header File. The matrix inversion routine is a function; it returns
the double-precision value pivot_min. Therefore, you must include the line

INCLUDE '’ /usr/include/cm/cmssl-cmf.h’

at the top of the main program file. This file declares the type of the CMSSL functions
and symbolic constants.

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation 233



Matrix Inversion CMSSL for CM Fortran (CM-5 Edition)

Numerical Complexity. Given a matrix with dimensions (n X n), the number of floa-
ting-point operations is 2n> for real operands and 83 for complex operands.

EXAMPLES

Sample CM Fortran code that uses the matrix inversion routine can be found on-line

in the subdirectory
invert-and-solve/cmf/

of a CMSSL examples directory whose location is site-specific.
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Gauss-Jordan System Solver

Given two matrices, A and B, where B contains one or more right-hand-side vectors, this
routine solves a system of linear equations AX = B and overwrites B with the solution
X = A-1 B. A numerically well-behaved variant of the Gauss-Jordan algorithm is used.

The two source arrays must be separate and distinct and they must have the same data type:
either real or complex.

SYNTAX

pivot_min = gen_g]_solve (A, B, size, nrhs, pivoting_strategy, ier)

ARGUMENTS

A 2-dimensional CM array of type real or complex. Contains, and
may be larger than, the (size X size) square matrix of coefficients,
A. Must be of shape (size, size) or larger.

B 1- or 2-dimensional CM array of type real or complex. Contains,
and may be larger than, the (size X nrhs) matrix B that contains the
right-hand-side vectors (bj ... bnrhs). If there are multiple
right-hand sides, rhs must be of shape (size, nrhs) or larger.
However, if nrhs = 1, then rhs can be either a vector of length
greater than or equal to size, or a matrix of shape (size, 1) or larger.
Upon successful return, rhs is overwritten by the solutions.

size Scalar integer variable. The number of rows (and columns) in the
matrix A.

nrhs Scalar integer variable. The number of right-hand-side vectors in
the matrix B. Must be less than or equal to the smaller dimension
of A.

pivoting_strategy Scalar integer variable representing the pivoting strategy used.
Value must be one of the following symbolic constants (or integer
equivalent):

CMSSL_partial_pivoting (0)
Modified partial pivoting. Column pivoting, where the pivot is
chosen from the pivot row; columns are, in effect, permuted.
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CMSSL_total_pivoting (1)

Conventional total pivoting, where the pivot is chosen from the
submatrix below and to the right of the pivot element; both
columns and rows are permuted.

ier Error code. Scalar integer variable set to 0 if the routine succeeds,
and to 1 otherwise.

RETURNED VALUE
pivot_min Real double-precision scalar variable. The magnitude of the
smallest pivot used. A very small pivot is evidence that the matrix
is close to singular. If an error or a floating-point exception oc-
curs, the routine returns a double-precision zero and sets ier to 1.
DESCRIPTION

Given a matrix A of shape (size, size) contained within A, and a second matrix B that
contains nrhs right-hand-side vectors, b ... b, and is contained in B, this function
solves for X in AX = B and overwrites B with X, as shown in Figure 23. Matrix A is left
untouched.

X
—

——
within B

Figure 23. Linear system solved for multiple right-hand-side vectors b; . . . by.

This operation is equivalent to performing nrhs column solves on B. That is, within B,
each column b is replaced by (4-! b). Note that while formally X = A-! B, as imple-
mented, this routine does not perform an explicit multiplication by 4-1.
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NOTES

Include the CMSSL Header File. The Gauss-Jordan system solver routine is a func-
tion; it returns the double-precision value pivot_min. Therefore, you must include the
line

INCLUDE ‘/usr/include/cm/cmssl-cmf.h’

at the top of the main program file. This file declares the type of the CMSSL functions
and symbolic constants.

Distinct Variables. The input CM arrays must be distinct variables.

Numerical Complexity. Given an A with dimensions (» X n), and B with dimensions
(n X 1), the number of floating-point operations is (2/3) n> + 2n2 r for real operands and
(8/3) n3 + 8n2 r for complex operands.

As an artifact of the implementation, this linear system solver routine copies A and B
into a temporary array with dimensions (size X [size + nrhs]).

EXAMPLES

Sample CM Fortran code that uses the Gauss-Jordan system solver can be found
on-line in the subdirectory

invert—-and-solve/cmf/

of a CMSSL examples directory whose location is site-specific.
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The routines described in this section solve a linear system of equations AX=B
where A is a real or complex matrix of size n X n that is too large to fit into core
memory. The method used for reducing A to triangular form is block Gaussian
elimination with partial pivoting. The L and U factors are stored externally and
can later be used to solve AX=B for an arbitrary number of right-hand sides.

Details are provided in the man page that follows.
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The routines described below solve the linear system of equations AX=B where A is a real
or complex matrix of size n X n that is too large to fit into core memory. The method used
for reducing A to triangular form is block Gaussian elimination with partial pivoting. The
L and U factors are stored externally and can later be used to solve AX=B for an arbitrary
number of right-hand sides.

SYNTAX ‘
gen_lu_factor_ext (n, blk, type, unitl, unit2, unit3, ier)

gen_lu_solve_ext (B, nrhs, n, bik, type, unit2, unit3, ier)

ARGUMENTS

n Scalar integer variable. The size of the matrix A that is stored on
an external device. Also, the number of rows in the matrix B.

bk Scalar integer variable. Block size. The matrix A is partitioned
into blocks of blk columns, or panels. See the Notes section,
below, for guidelines for choosing bik.

You must use the same block size for both the factor and the solve
routine.

type Scalar integer variable. The data type. Specify one of the
following values:

CMSSL_singie_real real*4
CMSSL_double_real real*8
CMSSL_singlie_complex complex*8
CMSSL_double_complex complex*16

B CM array of rank 2, the same data type as A, and size n X nrhs. On
input, must contain the nrhs right-hand sides. On return, contains
the nrhs solutions to AX = B.

nrhs Scalar integer variable. The number of columns in B.

unitl Scalar integer. Valid unit number associated with the file that
contains the matrix A stored in serial order (see the Notes below.)
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Use the CM Fortran utility CMF_FILE_OPEN to associate a file
with a unit number (or use the equivalent utility to associate a
socket or device with a unit number). Data stored in unitl is not
modified unless unitl = unit2.

Scalar integer. Valid unit number associated with the file that will
contain the LU factors on return from gen_lu_factor_ext. Use the
CM Fortran utility CMF_FILE_OPEN to associate a file with a unit
number (or use the equivalent utility to associate a socket or
device with a unit number). If unit2 = unitl, the original matrix
A is overwritten by its LU factors.

Scalar integer. Valid unit number associated with the file that will
contain internal information about the LU factors on return from
gen_lu_factor_ext. Use the CM Fortran utility CMF_FILE_OPEN to
associate a file with a unit number (or use the equivalent utility to
associate a socket or device with a unit number).

Scalar integer variable. Return code. Set to 0 upon successful
return, or to one of the following error codes:

-1 1/O error on unitl.
-2 I/O error on unit2.
-3 IJO error on unit3.

-4 Invalid type.

The routines described in this man page solve the linear system of equations AX=B,
where A is a real or complex matrix of size n X n that is too large to fit into core
memory. The gen_lu_factor_ext routine reads blocks of blk columns of A from unitl,
uses block Gaussian elimination with partial pivoting to reduce A to triangular form,
writes the LU factors to unit2, and writes information about them to unit3. The gen_lu_
solve_ext routine reads the factors from unit2 and unit3, solves AX=B for an arbitrary
number of right-hand sides, and returns the nrhs solutions in the B argument.

The gen_matrix_mult_ext routine, described in Chapter 3, can be used to check the
accuracy of the result. The best possible accuracy for the solution to Ax = b is obtained-
when ||JAx-bllo / [JAlle I}l = €, Where € is the machine accuracy. The quantity AX - B
can be computed with gen_matrix_mult_ext for all right-band sides at once.
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NOTES

Include the CMSSL Header File. Because the routines described above use symbolic
constants, you must include the line

INCLUDE ' /usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls these routines. This file declares the types
of the CMSSL symbolic constants.

File Units. The IO units unitl, unit2, and unit3 must be assigned to files before you
call the routines that access them. In CM Fortran, file assignment is done with the
CMF_FILE_OPEN utility (or an equivalent utility for a device or socket). For
information regarding parallel /O in general, see the CM-5 I/O System Programming
Guide. For information about the CM Fortran interface to parallel IO, see the CM For-
tran Utility Library Reference Manual. As described in this manual, there are
essentially two modes of external storage: Fixed Machine Size (FMS) and Serial Order
(SO). Serial order is the familiar Fortran row-major order and is the one used by the
external LU routines. Therefore, A must be stored in serial order in file unit unitl. In
this order, the data is portable across the CM-5 external storage systems (DataVault,
Scalable Disk Array, HIPPI).

The file associated with unir2 will store as much data as the original matrix (that is, n2
data elements), whereas the file associated with unit3 will contain much less data, the
exact amount depending on the machine configuration.

If you set unit2 = unitl, the original matrix A is overwritten by its LU factors.

Partition Size. The partition size used to solve the system of equations must be
identical to the one used previously to factor the matrix.

Choosing the Block Size. The block Gaussian elimination algorithm partitions the
matrix into block columns, or panels, A4;, of size n X bik:

A=[A A . An ]

The last panel, A,,, contains fewer than blk columns if blk is not a divisor of n. It is
important to choose the block size blk as large as possible in order to minimize the I/O
cost and optimize machine utilization. The in-core memory requirement for gen_lu_
factor_ext is approximately (5v + 16)n*bik bytes, where v is the number of bytes in the
data type of A.

Choosing the block size bk to be a multiple of 16 may also improve performance. This
is because the blocking factor, nblock, in the in-core LU routine gen_lu_factor (upon
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which gen_lu_factor_ext is built) is set internally to 16. Given this fact and the memory
requirement mentioned above, it is possible to choose a reasonable blk value for a
given n and a given amount of core memory.

Complexity Analysis. The gen_lu_factor_ext routine requires (2/3)n3 operations for
real operands and (8/3)n> operations for complex operands. The amount of data trans-
ferred during the block LU triangularization is

n(n + blk) (2n + blk) ]
3 blk

For blkn small, this quantity becomes O(2n3 / 3blk). Given these numbers, the average
floating-point operation (flop) rate for the in-core LU routine, and the data transfer rate
between the CM and the external storage system, it is possible to make a very rough
estimate of the time required for the out-of-core factorization. On the CM-5, for exam-
ple, a conservative choice for the flop rate for the in-core LU routine is 10 Mflops per
vector unit, while the data transfer rate on the Scalable Disk Array is roughly 1 Mbyte/
sec per disk. With p vector units and g disks, the estimated time for a problem of size n
is

o W n -6 2nv -6
Terith = 5 75, 10" seconds and Trangter 3 blk g 107 seconds

where u = 2 for real operands and u = 8 for complex operands, and v is the number of
bytes in the matrix data type. Hence, the total time is

r=m[_u + -2V_| 10-6 seconds.
3 | Top * ik

Choosing, for example, u = 2, v = 8 (that is, a data type of real*8), n = 10,000, bik =
1200, p = 128 vector units, and g = 8, we have Ipyi, = 520 seconds and Tyrgngfer = 555
seconds, and hence a total time of 7'~ 18 minutes. Only the order of magnitude of such
an estimate should be considered significant.
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EXAMPLES

Sample CM Fortran code that uses the LU routines can be found on-line in the subdi-
rectory

external/lu/cmf/

of a CMSSL examples directory whose location is site-specific.
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5.6 QR Factorization and Least Squares Solution
with External Storage

The routines described in this section perform a QR factorization of a real or
complex matrix A of size m X n (with m > n) that is too large to fit into core
memory. The method uses Householder reflections. The Q and R factors are
stored externally and can later be used to solve AX=B for an arbitrary number
of right-hand sides.

Details are provided in the man page that follows.
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QR Factorization and Least Squares
Solution with External Storage

The routines described below perform a QR factorization of a real or complex matrix A of
size m X n (with m > n) that is too large to fit into core memory. The method uses House-
holder reflections. The Q and R factors are stored externally and can later be used to solve
AX=B for an arbitrary number of right-hand sides.

SYNTAX

gen_qr_factor_ext (m, n, blk, type, pivoting_strategy, unitl, unit2, unit3, ier)

gen_qr_solve_ext (B, nrhs, m, n, blk, type, pivoting_strategy, unit2, unit3, ier)

ARGUMENTS

m Scalar integer variable. The number of rows in the matrix A that is
stored on an external device. Also, the number of rows in the
matrix B.

n Scalar integer variable. The number of columns in the matrix A
that is stored on an external device.

bik Scalar integer variable. Block size. The matrix A is partitioned
into blocks of blk columns, or panels. See the Notes section,
below, for guidelines for choosing bik.

You must use the same block size for both the factor and the solve
routine.

type Scalar integer variable. The data type. Specify one of the
following values:

CMSSL_single_real real*4
CMSSL_double_real real*8
CMSSL_single_complex complex*8
CMSSL_double_complex complex*16

pivoting_strategy Scalar integer variable specifying the pivoting strategy to be used.
The only values currently available are as follows:
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nrhs
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unit2

unit3
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CMSSL_no_pivoting No pivoting, no scaling
CMSSL_no_pivoting_scale No pivoting, scaling

For a description of scaling, see Section 5.3.7.

CM array of rank 2, the same data type as A, and size m X nrhs.
On input, must contain the nrhs right-hand sides. On return, the
first n rows of B contain the nrhs solutions to AX = B.

Scalar integer variable. The number of columns in B.

Scalar integer. Valid unit number associated with the file that
contains the matrix A stored in serial order (see the Notes below.)
Use the CM Fortran utility CMF_FILE_OPEN to associate a file
with a unit number (or use the equivalent utility to associate a
socket or device with a unit number). Data stored in unitl is not
modified unless unitl = unit2.

Scalar integer. Valid unit number associated with the file that will
contain the QR factors on return from gen_gqr_factor_ext. Use the
CM Fortran utility CMF_FILE_OPEN to associate a file with a unit
number (or use the equivalent utility to associate a socket or
device with a unit number). If unit2 = unitl, the original matrix
A is overwritten by its QR factors.

Scalar integer. Valid unit number associated with the file that will
contain internal information about the QR factors on return from
gen_gqr_factor_ext. Use the CM Fortran utility CMF_FILE_OPEN to
associate a file with a unit number (or use the equivalent utility to
associate a socket or device with a unit number).

Scalar integer variable. Return code. Set to 0 upon successful
return, or to one of the following error codes:

-1 I/O error on unitl.
-2 I/O error on unit2.
-3 1/O error on unit3.

-4 TInvalid type.
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DESCRIPTION

The routines described in this man page perform a QR factorization of a real or com-
plex matrix A of size m X n (with m > n) that is too large to fit into core memory. The
gen_qr_factor_ext routine reads blocks of blk columns of A from unitl, uses block
Householder reflections to factor A, writes the QR factors to unit2, and writes informa-
tion about them to unit3. The gen_qr_solve_ext routine reads the factors from unit2 and
unit3, solves AX=B for an arbitrary number of right-hand sides, and returns the nrhs
solutions in the first n rows of B.

The gen_matrix_mult_ext routine, described in Chapter 3, can be used to check the
accuracy of the result. The best possible accuracy for the solution to Ax = b is obtained
when [|Ax-bll / l|A]l |Xll = €, where € is the machine accuracy. The quantity AX - B
can be computed with gen_matrix_mult_ext for all right-hand sides at once.

NOTES

Include the CMSSL Header File. Because the routines described above use symbolic
constants, you must include the line

INCLUDE ’/usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls these routines. This file declares the types
of the CMSSL symbolic constants.

File Units. The I/O units unitl, unit2, and unit3 must be assigned to files before you
call the routines that access them. In CM Fortran, file assignment is done with the
CMF_FILE_OPEN utility (or an equivalent utility for a device or socket). For
information regarding parallel I/O in general, see the CM-5 J/O System Programming
Guide. For information about the CM Fortran interface to parallel /O, see the CM For-
tran Utility Library Reference Manual. As described in this manual, there are
essentially two modes of external storage: Fixed Machine Size (FMS) and Serial Order
(SO). Serial order is the familiar Fortran row-major order and is the one used by the
external QR routines. Therefore, A must be stored in serial order in file unit unitl. In
this order, the data is portable across the CM-5 external storage systems (DataVault,
Scalable Disk Array, HIPPI).

The file associated with unit2 will store as much data as the original matrix (that is, nm
data elements), whereas the file associated with unit3 will contain much less data, the
exact amount depending on the machine configuration.

If you set unit2 = unitl, the original matrix A is overwritten by its QR factors.
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Partition Size. The partition size used to solve the system of equations must be
identical to the one used previously to factor the matrix.

Choosing the Block Size. The block Householder factorization algorithm partitions
the matrix into block columns, or panels, A;, of size m X blk:

A=[A} A ... 4]

The last panel, 4;, contains fewer than blk columns if blk is not a divisor of n. It is
important to choose the block size blk as large as possible in order to minimize the /O
cost and optimize machine utilization. The in-core memory requirement for gen_gr_
factor_ext is approximately (5v + 16)m*blk bytes, where v is the number of bytes in the
data type of A.

Choosing the block size blk to be a multiple of 16 may also improve performance. This
is because the blocking factor, nblock, in the in-core QR routine gen_qr_factor (upon
which gen_gr_factor_ext is built) is set internally to 16. Given this fact and the memory
requirement mentioned above, it is possible to choose a reasonable blk value for a
given n and a given amount of core memory.

Least Squares Solution. The least squares solution obtained from gen_gqr_solve_ext
is unique only if the problem has full rank (rank A = n). Unlike the in-core QR routines,
the current out-of-core version does not provide a way for you to determine the rank
of A.

Complexity Analysis. The gen_gr_factor_ext routine recjuires 2n2_[m - (n/3)] opera-
tions for real operands and 8n2[m - (n/3)] operations for complex operands. The
amount of data transferred during the block QR factorization is

n(n + blk) m+ blk-n
blk 3 ’

For blkfn small, this quantity becomes

ol {31

Given these numbers, the average floating-point operation (flop) rate for the in-core
QR routine, and the data transfer rate between the CM and the external storage system,
it is possible to make a very rough estimate of the time required for the out-of-core
factorization. On the CM-5, for example, a conservative choice for the flop rate for the
in-core QR routine is 10 Mflops per vector unit, while the data transfer rate on the
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Scalable Disk Array is roughly 1 Mbyte/sec per disk. With p vector units and g disks,
the estimated time for a problem of size m X n is

i .
Tari = 42 { m - %} 106 seconds and Tirangfer = ﬁ;{m - %H‘ 106 seconds

where u = 2 for real operands and u = 8 for complex operands, and v is the number of
bytes in the matrix data type. Hence, the total time is

=2l m-Bll 2L + Y __|106seconds.
T=n [’” 3][10p ¥ q*blk]

Choosing, for example, u = 2, v = § (that is, a data type of real*8), m = 10,000, n =
5,000, blk = 1200, p = 128 vector units, and g = 8, we have T, = 325 seconds and
Tiransfer = 174 seconds, and hence a total time of T = 10 minutes. Only the order of
magnitude of such an estimate should be considered significant.

EXAMPLES

Sample CM Fortran code that uses the LU routines can be found on-line in the subdi-
rectory external/qr/cmf/ of a CMSSL examples directory whose location is

site-specific.
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5.7 References

250

For information about general linear solvers, see the following references:

1.

2.

3.

Golub, G.H., and C. F. Van Loan. Matrix Computations. 2d ed. Baltimore:
Johns Hopkins University Press, 1989.

Johnsson, S. L. Communication Efficient Basic Linear Algebra Computa-
tions on Hypercube Architectures. Journal of Parallel and Distributed
Computing 4 (1987): 133-72.

Wilkinson, J. H. Error Analysis of Direct Methods of Matrix Inversion. J.
Assoc. Comput. Mach. 8 (1961): 281-330.

For information about how the slicewise LU and QR routines implement block-
ing, and other aspects of the LU and QR operations, refer to

4,

Dongarra, J. J., I S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving
Linear Systems on Vector and Shared Memory Computers. Philadelphia:
SIAM, 1991.

. Hager, W. W. Condition Estimates. SIAM J. Sci. Stat. Comput. 5 (1984):

311-16.

Higham, N. J. Experience with a Matrix Norm Estimator. SIAM J. Sci. Stat.
Comput. 11, no. 4 (1990): 804-9.

. Higham, N. J. FORTRAN Codes for Estimating the One-Norm of a Real

or Complex Matrix, with Applications to Condition Estimation. (Algo-
rithm 674) ACM Trans. Math. Soft. 14 (1988): 381-96.

Higham, N. J. The Accuracy of Solutions to Triangular Systems. SIAM J.
Numer. Anal. 26, no.5 (1989):1252-65.

Johnsson, S. L. A Computational Array for the QR-method. Proceedings
of the Conference on Advanced Research in VLSI. Ed. P. Penfield, Jr. Ar-
tech House, 1982. Pp. 123-29,

10.Lichtenstein, W. and S. L. Johnsson. Block Cyclic Linear Algebra. Think-

ing Machines Corporation Technical Report TR-215, 1992.

11.Schreiber, R. S., and C. E Van Loan. A Storage Efficient WY Representa-

tion for Products of Householder Transformations. SIAM J. Sci. Stat.
Comput. 10, no. 1 (1989): 53-57.

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation



Solvers for D

12.Vavasis, S. Implementation of QR factorization on the Connection Ma-
chine CM-2. Personal communication.

13.Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford: Clarendon
Press, 1965.

14.Van de Geijn, R. A. Massively Parallel LINPACK Benchmark on the Intel
Touchstone Delta and iPSC/860 Systems. Technical Report, University of
Texas at Austin, 1991.

For an analysis of the numerical behavior of the algorithm used in the matrix
inversion and Gauss-Jordan reduction routines, see the following:

15.Dekker, T. J., and W. Hoffman. Rehabilitation of the Gauss-Jordan Algo-
rithm. Numerische Mathematik 54 (1989): 591-99.

Version 3.1, June 1993

Copyright © 1993 Thinking Machines Corporation 251






Chapter 6

Linear Solvers for Banded Systems

This chapter describes the CM Fortran interface to the CMSSL banded linear sys-
tem solver routines. The banded system routines factor and solve tridiagonal,
pentadiagonal, block tridiagonal, and block pentadiagonal systems of equations.
They solve multiple systems of equations, each with one or more right-hand
sides, for both real and complex data types. A choice of algorithms is offered.

The multiple-instance capability of the banded system routines in CMSSL is par-
ticularly useful in connection with Fourier Analysis Cyclic Reduction, or
Alternating Direction Methods. You can specify the axis along which the sys-
tems are to be solved. No data reordering or transposition is necessary for the
solution of systems along any axis.

On the CM-5, the CMSSL includes two sets of banded system routines that offer
nearly the same functionality:

= A “unified” set of routines. This set includes one factorization routine and
one solver routine that work on all four banded system types (tridiagonal,
pentadiagonal, block tridiagonal, and block pentadiagonal). Section 6.1 -
describes these routines.

= A set that includes three routines (a factorization routine, a solver routine,
and a routine that both factors and solves) for each of the four banded sys-
tem types. These routines are included in the library for compatibility with
the CM-200, and are described in Section 6.2.

The two sets of banded system routines use the same array arguments. Only the
ordering of some of the arrays in the calling sequence differs. For example, the
“unified” routines list the arrays representing diagonals in order from lowermost
to uppermost (a, b, c, d, €) while the other routines list them from uppermost to
lowermost (e, d, ¢, b, a). In addition, the “unified” routines allow you to supply
a pivot value — a feature not included in the other routines.
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Detailed descriptions of the banded system routines, including calling sequences,
argument definitions, and usage information, are provided in the man pages in
this chapter. Section 6.3 lists references.
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6.1 Banded System Factorization and Solver Routines
(Unified)

This section describes the “unified” banded system factorization and solver rou-
tines. The following topics are covered:

® the routines and their functions

= algorithms used

® how to set up your data

6.1.1 The Routines and Their Functions

The unified banded system routines are listed below.

gen_banded_factor

gen_banded_solve

deallocate_banded

6.1.2 Algorithms Used

Given tridiagonal or block tridiagonal matrices A
(represented by three arrays), or pentadiagonal, or
block pentadiagonal matrices A (represented by five
arrays), this routine performs the factorization A = LU
for each matrix, where L and U are lower and upper
(respectively) bidiagonal or block bidiagonal, or lower
and upper (respectively) tridiagonal or block
tridiagonal matrices, or permutations thereof.

Given the factors computed by gen_tridiag_factor, and
corresponding arrays B each containing one or more
right-hand-side vectors, this routine computes the
solutions to LUX = B, and overwrites each B with the
solution. ‘

This routine deallocates the memory required by the
factorization and solver routines.

When calling the banded system routines, you must specify the algorithm to be
used. The following algorithms are available:

CMSSL_pipeline_ge Pipelincd Gaussian elimination.
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CMSSL_pge_piv Pipelined Gaussian elimination with pairwise
pivoting. This algorithm is available for tridiagonal
systems only. If you specify it with a pentadiagonal or
block system, the routine uses CMSSL_pipeline_ge
instead. '

CMSSL_pge_piv_val Pipelined Gaussian elimination with pairwise
pivoting; replace zero pivots with a supplied value.
This algorithm is available for tridiagonal systems
only. If you specify it with a pentadiagonal or block
system, the routine uses CMSSL_pipeline_ge instead.

CMSSL_substr_cr Substructuring with cyclic reduction.
CMSSL_substr_ber  Substructuring with balanced cyclic reduction.
CMSSL_substr_pge  Substructuring with pipelined Gaussian elimination.

CMSSL_substr_transp Substructuring with transpose. This algorithm is
available for tridiagonal systems only. If you specify it
with a pentadiagonal or block system, the routine
returns an error code.

The last four algorithms listed above involve a “divide and conquer” scheme
based on substructuring, and differ in the technique used to solve the reduced
system of equations. Performance is strongly influenced by the data layout.

NOTE

If the axis along which the diagonal elements or blocks lie (axis
vector_axis in the argument list) is serial, the routine always
uses Gaussian elimination (with pivoting, if you selected pivot-
ing and have a tridiagonal system).

The algorithm descriptions that follow apply to tridiagonal systems. Block tridia-
gonal algorithms are the obvious extensions of the elementwise ones;
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pentadiagonal solvers are based on the block tridiagonal solvers and use the same
algorithms.

Pipelined Gaussian Elimination

If you select pipelined Gaussian elimination and you supply multiple systems to
be solved, all of which are distributed over the same set of processing elements,
then pipelining is used to achieve load balance. Figure 24 illustrates pipelining.
In the figure, six systems of equations are distributed over four processing ele-
ments. The systems are represented by dashed lines. A solid line represents a set
of equations on which a processing element is actively working.

Figure 24 shows that there is a pipeline setup (and shutdown) phase proportional
to the number of equations per system per processing element, and the number
of processing elements over which the systems are distributed. When there are
many more systems per processing element than processing elements assigned
to each system, then all processing elements are active for most of the time, and
good load balance is achieved. In the current vector unit implementation, the sit-
uation is somewhat more complex in that vectorization in each processing
element is performed over sets of eight systems. The actual implementation cor-
responds to the case where each (dashed) line in Figure 24 represents eight
systems of equations. Hence, the pipeline setup and shutdown times are more
significant than the figure indicates. For few systems per processing element and
for many processing elements, the vectorization adversely affects performance,
while a signficant gain in performance is achieved when there are many more
systems per processing element than there are processing elements.

The current implementation of Gaussian elimination computes a reciprocal of the
diagonal elements in order to minimize the number of divisions required when
there are multiple right-hand sides per system of tridiagonal equations. The num-
ber of additions and multiplications for RHS right-hand sides per system of N
equations is (3+5RHS)(N-1). In addition, there are N divisions. For an instance
factor of I, both numbers are multiplied by I
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Figure 24. Pipelined Gaussian elimination.
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Pipelined Gaussian Elimination with Pairwise Pivoting

Pairwise pivoting refers to the exchange of a pair of adjacent rows whenever that
exchange results in a larger divisor for use in eliminating the subdiagonal
element.

Substructuring

Substructuring reduces the number of equations (or block equations) on a proces-
sing element to a single equation (or single block equation). This is accomplished
by means of a staggered forward and backward Gaussian elimination, as de-
scribed in references 6 and 4 in Section 6.3. After the elimination, a reduced
tridiagonal system must be solved using cyclic reduction, balanced cyclic reduc-
tion, or pipelined Gaussian elimination.

Cyclic reduction is discussed below. Balanced cyclic reduction can be used in the
multiple-instance case to improve the load balance over that of standard cyclic
reduction. During each stage of the cyclic reduction, the number of instances
returned in parallel doubles. In substructuring with transpose, the reduced tridia-

gonal system of equations resulting from the substructuring is transposed so that
the Gaussian elimination is done locally; the results are transposed back into the

original geometry.

Cyclic Reduction

A tridiagonal system of irreducible linear equations Ax =y, where A is of dimen-
sion N = 2™ can be presented in matrix vector form as

B ar .7 T v, ]
b1 a X1 n
a b o x2 Y2

a3 b3 c3 X3 y3

L ay by| | x_ L V|

Odd-even cyclic reduction consists of a reduction phase succeeded by a back-
substitution phase. Using subscripts for equation numbers and superscripts to
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denote reduction and back-substitution steps, cyclic reduction is defined by the
following set of equations:

Reduction j j-
i

where i = 2,2 X2/, 3x 2/, ..., 2" - 2J, for reduction steps j = 1, 2, ..., n - 1.
The initial conditions are

0 0
g’ - 4 b'- b - ¢ ady -y,

After n - 1 reduction steps, only one equation of the following form remains:
n-1 bn ~1 n-1 n-1

Gr-1% * G-l %mo1 F Gno1 %, - Yon-1

A correct solution for
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xzn-l

is obtained, with xp = xn+1 = 0. Remaining variables are obtained through back-
substitution using the following equations:

Back-Substitution -
yzn-l
xzn—l =
bn—l
2n—1
j-1 j-1 j-1
i - & KMo box -
X = ]
b
1
’ wherei= {2/, 3x2F 5x2-, ., 2n-2F} andj={n-1,n-2,..1}.

In the above algorithm, 12 arithmetic operations are needed per equation in the
reduction computation, and 5 per unknown in the back-substitution. A careful
count gives a total of 17N - 18n + 2 arithmetic operations, disregarding index
computations.

Hints for Choosing an Algorithm

Performance is best for a given array when the axis along which the blocks or
elements lie is serial. When this axis is not serial, use the following guidelines
when choosing an algorithm:

= If there is only one instance, substructuring with cyclic reduction yields
the best performance.

= Asthe number of instances per processing element increases, balanced cy-
clic reduction begins to yield the best performance.

These statements are highly dependent on the exact array size and layout used
in a given problem. Thus, these guidelines are rough, and you are encouraged to
experiment with different algorithms to find the one best suited to your problem.
) For example, if you have a multidimensional array in which tridiagonal systems
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lying along different axes will be solved with separate calls to the banded solvers,
you could use substructuring with cyclic reduction along one axis, pipelined
Gaussian elimination along another axis, and substructuring with balanced cyclic
reduction along a third axis.

NOTE

If you are working with a single- or multiple-instance element-
wise tridiagonal or pentadiagonal system with one right-hand
side, and axis axis is local to a processing element, you will
probably achieve better performance by writing the operation
in CM Fortran than by using the CMSSL banded system solver
routines. This is especially true in the case of pentadiagonal
systems.

Accuracy

Numerical experiments have suggested that pipelined Gaussian elimination pro-
duces the most accurate solution.

Numerical Stability

Odd-even cyclic reduction is stable for diagonally dominant or positive definite
systems. For poorly conditioned systems, the algorithm may be unstable. The
algorithm can be stabilized (see reference 1 in Section 6.3), but the current imple-
mentation does not include a stablization scheme.

Gaussian elimination is numerically more stable than odd-even cyclic reduction.
The current implementation does not support any data-dependent pivoting.

For an analysis of the stability of Gaussian elimination and odd-even cyclic re-
duction, see (for instance) references 1, 3, and 8.
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Copyright © 1993 Thinking Machines Corporation

.
i




1

Chapter 6. Linear Solvers for Banded Systems

6.1.3 How to Set Up Your Data

Tridiagonal and Pentadiagonal Systems

When you factor and solve an elementwise tridiagonal or pentadiagonal system,
you must represent each coefficient matrix in the form of three vectors (for tridia-
gonal systems) or five vectors (for pentadiagonal systems). You must also supply
an integer, vector_axis, that identifies the axis of each of these three or five vec-
tors along which the matrix elements lie (that is, the non-instance axis).

In addition, when you call the solve routine, you must supply the argument B,
the CM array that contains the right-hand-side vectors B and is overwritten with
the solution X.

The detailed requirements for these arrays (and the other required arguments) are
provided in the man page at the end of this section. Illustrations and examples
are provided below.

For tridiagonal systems, you must supply three CM arrays, ¢, b, and a, containing
the upper, main, and lower diagonal elements, respectively.

To solve a single system, specify the ¢, b, and @ array arguments as vectors.
Figure 25 shows the simplest case: solving a single system with a single right-
hand side. Within matrix A, the vectors ¢, b, and a are shown holding the
principal and off-diagonal values. The array B is shown as two vectors: the right-
hand-side vector B and the solution vector X. Notice that although they represent
shorter diagonals, the vectors ¢ and a are of the same length as b. The first ele-
ment of a and the last element of ¢ are set to zero during execution.
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i

x =
A X B
N v

gl

B

Figure 25. A single tridiagonal system with a single right-hand side.

In matrix notation, the single-system, single-solution case can be represented as
shown in Figure 26.

264

ey " () 0 ) b
) m® 12) 2] _ |
u63) m® 1) X +3) b3)
0 m(¥ 14 x4 p4)
¢ b a N— ~ g
B

Figure 26. Matrix notation of single tridiagonal system with single right-hand side.

To solve for multiple right-hand sides, specify the B argument with a serial di-
mension equal to the number of right-hand sides. Figure 27 shows a single
tridiagonal system with nrhs right-hand sides. Note that the multiple right-hand-
side vectors, b(1)... ("3, and their associated solution vectors, x(1)...x("™3) are
laid out along a serial dimension of length nrhs.
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< nrhs » < nrhs >

x(D),, xrhs) | B(I),  plnrks)

ol

Figure 27. Single tridiagonal system with multiple right-hand sides and solutions.

To solve multiple systems in parallel, specify ¢, b, and a with at least 2 dimen-
sions (one data axis and one instance axis) each. The data axis (specified as
vector_axis in the argument list) represents the coefficients of each system. The
instance axis specifies how many systems are represented.

Figure 28 shows multiple concurrent systems, each with a single right-hand side.
The n instances of the matrix A are represented by the n sets of tridiagonal values
in ¢, b, and a. Similarly, rhs consists of the set [b; ... by] of n right-hand-side
vectors, and solution consists of the set [x; ... x,] of n solutions. In this case, there
is only one right-hand-side vector for each system; each is overwritten by the one
solution vector for that system.
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b
for°°

Figure 28. Multiple tridiagonal systems
with single right-hand side for each system.

In matrix notation, the multiple-system, single-solution case can be represented

as shown in Figure 29.
uj 1) uz(l) u3(“‘ my (1) mZ(I) m3(1) 0 0 0
w B up u3 m® myB mg LB LB LG
c b a
x () xp(1) x3(1) b)) B ps(D)
X 13 206 506 = b3 b3 b3
5@ @ x4 u@ b p@
solution rhs

Figure 29, Matrix notation of multiple tridiagonal systems
with one right-hand side each.
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Figure 30 shows n systems, each with nrhs right-hand sides. Remember that the
axis of length nrhs must be serial.

-z -

<— nrhs —» -— nrhs —»
e n’”’ﬂ
LTI

X, .. x(orhs)  # b, , , plarks)  bs

iiili il

Figure 30. Multiple tridiagonal systems
with multiple right-hand sides for each system.

Pentadiagonal systems are represented in the same way as tridiagonal systems,
except that you must supply five CM arrays, e, d, ¢, b, and a, containing the ele-
ments of the five diagonals of the coefficient matrices, as shown in Figure 31.
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Figure 31. A single pentadiagonal system with a single right-hand side.

Block Tridiagonal and Block Pentadiagonal Systems

When you factor and solve a block tridiagonal or block pentadiagonal system,
the routines assume that each matrix A is represented by three arrays (for block
tridiagonal systems) or five arrays (for block pentadiagonal systems). More spe-
cifically,

® For block tridiagonal systems, you must supply three CM arrays, c, b, and
a, containing the square blocks of the coefficient matrices.

= For block pentadiagonal systems, you must supply five CM arrays, e, d,
¢, b, and a, containing the square blocks of the coefficient matrices.

The detailed requirements for these arrays (and the other required arguments) are
provided in the man page at the end of this section.

Figure 32 shows a block tridiagonal system with one instance. In the equation AX
= B, each n X n block of A is multiplied by a vector of length n within X to pro-
duce a vector of length n within B.

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation



1 m r o
2 n(] dt
r r
p D |0 n(]
12 3 P TT .
A X = B
C - ~ _
B B
[Ja r = number of right-hand sides

Figure 32. Single-instance block tridiagonal system,

Block pentadiagonal systems are represented in exactly the same manner, except
that instead of three arrays of blocks (¢, b, and a), there are five (a through e).

6.1.4 Need for Interface Blocks

If you supply an array section, rather than an entire array, for B, a, b, ¢, d, or e,
you must use an interface block to ensure that the subsection axis corresponding
to any array axis that is required to be serial, is also defined as serial. An example
is provided below. For information about interface blocks and about passing
array sections, refer to the CM Fortran documentation set.

In this example, the user application declares the input diagonals as follows:

real , array (nblk,nblk,neqgn) :: a.,b,c,d,e
cmf$ layout a(:serial, :serial, :news)
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layout b(:serial, :serial, :news)
layout c{(:serial, :serial, :news)
layout d(:serial, :serial, :news)
layout e(:serial, :serial, :news)
real , array (nblk,neqn) :: rhs
layout rhs(:serial, :news)

In this case, the interface blocks are as follows:

cmf$
cmfs$
cmf$
cmf$
cmf$

cmf$
cmf$
cmf$
cmf$
cmf$
cmf$

interface
subroutine gen banded factor( sys_type,

$ a, b, ¢, d, e,

$ axis, work, type, pivot_value, nblock, ierror )
implicit none

real a(:,:,:) ,b{:,:,) ,c(:,:,:) ,d(:,:,2), e(:,:,:)
layout a(:serial, :serial, :news)
layout b(:serial, :serial, :news)
layout c(:serial, :serial, :news)
layout d(:serial, :serial, :news)
layout e(:serial, :serial, :news)

integer sys_type, axis, work, type
real pivot_value

integer nblock, ierror

end interface

interface

subroutine gen banded solve(sys_type,
$ ths, a, b, ¢, d, e,
$ axis, work, ierror )

implicit none

real a(:,:,:) ,b(:,:,:), cl:,z,2) ,d(:,:,:), e(:,:,2)
real rhs(:,:)

layout a(:serial, :serial, :news)

layout b(:serial, :serial, :news)

layout c(:serial, :serial, :news)

layout d(:serial, :serial, :news)

layout e(:serial, :serial, :news)

layout rhs(:serial, :news)

integer sys_type, axis, work, ierror
end interface
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The calls using array subsections are as follows, where 1 < s, ¢ < negn:

call gen_banded factor (3, a(:,:,s:t), b(:,:,s:t),

$ c(:,:,s:t), d(:,:,s:t), e(:,:,s:t), 3, work,
$ i, 0, 0, ier)
call gen banded_solve(3, rhs(:,s:t), a(:,:,s:t),
$ b(:,:,s:t), c(:,:,s:t), d(:,:,s:t), e(:,:,s:t),
$ 3, work, ier)
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Banded System Factorization and Solver
Routines (Unified)

Given one or more instances of a tridiagonal, block tridiagonal, pentadiagonal, or block
pentadiagonal matrix A, the routines described below factor A, solve the system(s) AX =
B (where B is an array containing one or more right-hand sides), and overwrite B with the
solution. Pairwise pivoting is available for tridiagonal systems. A and B must have the
same data type (real or complex) and precision (single or double). In the syntax below, the
solution X and the right-hand-side B are both represented by the array B.

SYNTAX
sys_type = 0 (tridiagonal system):

gen_banded_factor (sys_type, a, b, c, vector_axis, work, type, pivot_value, ier)
gen_banded_solve (sys_type, B, a, b, c, vector_axis, work, ier)
deallocate_banded (work)

sys_type = 1 (block tridiagonal system):

gen_banded_factor (sys_type, a, b, c, vector_axis, work, type, pivot_value,
nblock, ier)

gen_banded_solve (sys_type, B, a, b, c, vector_axis, work, ier)

deallocate_banded (work)

sys_type = 2 (pentadiagonal system):

gen_banded_factor (sys_type, a, b, ¢, d, e, vector_axis, work, type, pivot_value,
: ier)

gen_banded_solve (sys_type, B, a, b, ¢, d, e, vector_axis, work, ier)

deallocate_banded (work)

sys_type = 3 (block pentadiagonal system):

gen_banded_factor (sys_type, a, b, ¢, d, e, vector_axis, work, type, pivot_value,
nblock, ier)

gen_banded_solve (sys_type, B, a, b, ¢, d, e, vector_axis, work, ier)

deallocate_banded (work)
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ARGUMENTS
sys_type Scalar integer variable indicating the type of system being solved.
Must have one of the following values:
‘0 Tridiagonal
1  Block tridiagonal
2  Pentadiagonal
3 Block pentadiagonal
B CM array that contains one or more right-hand sides. Must have

the same data type and precision as a, b, and ¢ (for a tridiagonal
system) or a, b, ¢, d, and e (for a pentadiagonal system). The solve
routine overwrites this array with the solution.

For sys_type = 0 or 2 (tridiagonal or pentadiagonal systems), you
may set up B in either of the following ways:

® B may have rank one greater than that of ¢, b, and a (for
a tridiagonal system) or e, d, ¢, b, and a (for a pentadiago-
nal system). The first axis counts the right-hand sides and
must be defined as :serial. Axis vector_axis counts the
elements within each right-hand side. The remaining axes
are instance axes that match those of e, d, ¢, b, and a in
extent, layout, and order of declaration.

= If there is only one right-hand side per instance, you may
omit the first axis. That is, B may have the same rank as
e, d, ¢, b, and a. Axis vector_axis counts the elements
within each right-hand side. The remaining axes are
instance axes that match those of e, d, ¢, b, and a in extent,
layout, and order of declaration.

For sys_type = 1 or 3 (block tridiagonal or block pentadiagonal
systems), you may set up B in either of the following ways:

® B may have rank equal to that of e, d, ¢, b, and a. The first
axis counts the elements within the subvectors to be mul-
tiplied by the blocks of 4 in the equation Ax = B. This axis
must be defined as :serlal, and has extent n if the blocks
are n X n. The second axis counts the right-hand sides, and
must also be defined as :serial. Axis vector_axis counts
the subvectors within each right-hand side. The remain-
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ing axes are instance axes that match those of e, d, ¢, b,
and a in extent, layout, and order of declaration.

= If there is only one right-hand side per instance, you may
omit the second axis. That is, B may have rank one less
than that of e, d, ¢, b, and a. The first axis counts the ele-
ments within the subvectors, must be defined as :serial,
and has extent n if the blocks are n X n. Axis vector_axis
counts the subvectors within each right-hand side. The
remaining axes are instance axes that match those of e, d,
¢, b, and a in extent, layout, and order of declaration.

In tridiagonal or block tridiagonal systems: Real or complex CM
arrays containing the elements or blocks that form the lower (a),
main (b), and upper (c) diagonals of all instances of A. These three
arrays must be distinct and must have the same shape, layout, data
type, and precision. The first element or block along axis vector_
axis axis of a, and the last element or block along axis vector_axis
of ¢, are set to zero during execution.

For sys_type = 0 (tridiagonal systems), each array must have rank
greater than or equal to 1. The vector_axis argument identifies the
axis along which the diagonal elements lie.

For sys_type = 1 (block tridiagonal systems), each array must
have rank greater than or equal to 3. The first two axes count the
rows and columns of the blocks of A. These axes must be defined
as :serlal, and have the same extent since the blocks must be
square. The remaining axes include the instance axes (if any) and
the axis along which the blocks lie. These remaining axes must
occur in the same order in all three arrays. The vector_axis
argument identifies the axis along which the blocks lie.

In pentadiagonal or block pentadiagonal systems: Real or
complex CM arrays containing the elements or blocks that form
the five diagonals of all instances of A. The array a represents the
lowermost diagonal; the array e represents the uppermost
diagonal. These five arrays must be distinct, but must all have the
same shape, layout, data type, and precision. The first element of
b, the last element of d, the first two elements of a, and the last two
elements of e are set to zero during execution.
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For sys_type = 2 (pentadiagonal systems), a, b, ¢, d, and e must
have rank greater than or equal to 1. The vector_axis argument
identifies the axis along which the diagonal elements lie.

For sys_type = 3 (block pentadiagonal systems), @, b, ¢, d, and e
must have rank greater than or equal to 3. The first two axes count
the rows and columns of the blocks of A. These axes must be
defined as :serial, and have the same extent since the blocks must
be square. The remaining axes include the instance axes (if any)
and the axis along which the blocks lie. These remaining axes
must occur in the same order in all five arrays. The vector_axis
argument identifies the axis along which the blocks lie.

Scalar integer variable. The axis of a, b, ¢, d, and e along which
the diagonal elements or blocks of A4 lie. The value of vector_axis
must be at least 1, but less than or equal to the rank of a, b, ¢, d,
and e). Performance is best if the axis identified by vector_axis is
defined as :serial, and second best if it is defined as
NEWS-ordered.

Integer front-end array of rank 1 and extent > 20. Internal
variable. Upon completion of a factor routine, work contains
information required by the associated solve routine.

Scalar integer that has one of the symbolic constant values (or
equivalent numeric values) listed below. Selects the algorithm.

CMSSL_pipeline_ge (3)
Pipelined Gaussian elimination.

CMSSL_pge_piv (9)
Pipelined Gaussian elimination with pairwise
pivoting. This algorithm is available for tridiago-
nal systems only. If you specify it with a
pentadiagonal or block system, the routine uses
CMSSL_pipeline_ge instead.

CMSSL_pge_piv_val (10)
Pipelined Gaussian elimination with pairwise
pivoting; replace zero pivots with a supplied
value. This algorithm is available for tridiagonal
systems only. If you specify it with a pentadiago-
nal or block system, the routine uses
CMSSL_pipeline_ge instead.
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nblock
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CMSSL_substr_cr (1)
Substructuring with cyclic reduction.

CMSSL_substr_ber (4)
Substructuring with balanced cyclic reduction.

CMSSL_substr_pge (2)
Substructuring with pipelined Gaussian elimina-
tion.

CMSSL_substr_transp (5)
Substructuring with transpose. This algorithm is
available for tridiagonal systems only. If you
specify it with a pentadiagonal or block system,
the routine returns ier = -5.

If the axis along which the diagonal elements or blocks lie (axis
vector_axis) is serial, the routine always uses Gaussian
elimination (with pivoting, if you selected pivoting and have a
tridiagonal system).

Scalar variable of the same data type as the banded system. When
type = 10, this value replaces any zero pivots the routine
encounters. This value is ignored if zype is not equal to 10.

Scalar integer variable. Specifies the blocking factor used
internally in the calculation of inverses. Must be < n. If you set
nblock to 0, the routines choose a predefined value that depends
on the size of the blocks you supply. For systems where n > 32,
there may be some benefit in experimenting with nblock to obtain
optimum performance. If you set nblock to an invalid value (for
example, a negative number), the routines use a blocking factor
of 1. :

Scalar integer variable. Return code. Set to 0 upon successful
return, or to one of the following error codes:

-1 Input arrays have inconsistent ranks.
-2 Axes that should be serial are not.
-3 Input arrays have inconsistent data types.

-4 Returned when sys_type = 1 or 3. The first two
axes of @, b, ¢, d, or e do not have equal extents;
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or, the B axis that counts the elements within the
subvectors to be multiplied by the blocks of A
does not have the same extent as the first axis of
a b, c d ore.

Invalid rype.
Invalid vector_axis.
The input arrays are not conformable.

There is an error in the work parameter.

1000 A zero pivot was encountered when CMSSL_pge_

piv was specified.

The banded system factorization and solver routines perform the following operations:

gen_banded_factor

gen_banded_solve

deallocate_banded

Given tridiagonal or block tridiagonal matrices A
(represented by three arrays), or pentadiagonal, or
block pentadiagonal matrices A (represented by five
arrays), this routine performs the factorization A = LU
for each matrix, where L and U are lower and upper
(respectively) bidiagonal or block bidiagonal, or lower
and upper (respectively) tridiagonal or block
tridiagonal matrices, or permutations thereof.

Given the factors computed by gen_tridiag_factor, and
corresponding arrays B each containing one or more
right-hand-side vectors, this routine computes the
solutions to LUX = B, and overwrites each B with the
solution.

This routine deallocates the memory required by the
factorization and solver routines.

Separation of the Factorization and Solution Phases. Separation of the factoriza-
tion and solution phases allows you to factor one or more instances of a matrix once,
and then call the solve routine multiple times, supplying the same factors but different
right-hand-side arrays each time — thus avoiding the overhead of repeated factoriza-

tion of the same matrices.
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Upon return from the factor routine, the three or five arrays that contained the matrices
A on input contain information required by the solve routine. The contents of these
arrays must therefore be preserved between the factor and solve calls.

Memory Allocation and Deallocation. Each time you call the factor routine, a buffer,
represented by the work argument, is allocated in memory. When you call the solve
routine, you must supply the value returned in work by the associated previous factor
call. The work buffer remains allocated until you explicitly deallocate it with
deallocate_banded. Thus, you can call the factor routine, perform other operations, and
later call the solve routine one or more times. You can also factor other sets of matrices,
thus creating different work buffers, and keep multiple work buffers allocated at the
same time.

Be sure to call deallocate_banded to deallocate buffer space whenever you have fin-
ished working with one set of factors. If you call the factor routine repeatedly without
deallocating buffer space, you will eventually run out of memory.

NOTES

278

Private Argument Values. The internal variable work is required for communicating
information between the factorization and solver phases. The application must not
modify the contents of this variable.

Preservation of Argument Values. Upon return from the factor routine, the arrays a,
b, ¢, d, and e contain information required by the solve routine. The contents of these
arrays must therefore be preserved between the factor and solve calls.

Distinct Variables. No overlapping of variables is allowed in these routines.

Caution. The buffer space associated with work depends on the size of the matrix or
matrices being factored. Therefore, if you call the factor routine more than once, be
sure to call deallocate_banded to deallocate the associated buffer space between factor-
ization calls, or use a different work array. Otherwise, a second call with the same work
array will allocate different buffer space but represent it with the same work value as in
the first call, and the buffer space associated with the first call will become
inaccessible.

Performance Hints. Performance is best if the axes listed below are defined as :serial,
and second-best if they are defined as NEWS-ordered.
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=  The axis of a, b, ¢, d, and e along which the blocks or elements lie (axis vector_
axis).

® The axis of B along which the subvectors or elements lie.

If you are working with a single- or multiple-instance elementwise tridiagonal or pen-
tadiagonal system with one right-hand side, and axis axis is local to a processing
element, you will probably achieve better performance by writing the operation in CM
Fortran than by using the CMSSL banded system solver routines. This is especially true
in the case of pentadiagonal systems.

ADI Applications. The multiple-instance implementation of the banded system solvers
is excellent for applications of the alternating-direction implicit method, where a solu-
tion along each axis is required.

Need for Interface Blocks. If you supply an array section, rather than an entire array,
for B, a, b, c, d, or e, you must use an interface block to ensure that the subsection axis
corresponding to any array axis that is required to be serial, is also defined as serial.
For information about interface blocks and about passing array sections, refer to the
CM Fortran documentation set.

EXAMPLES

Sample CM Fortran code that uses the banded system factorization and solver routines
can be found on-line in the subdirectory

tridlag/cmf/

of a CMSSL examples directory whose location is site-specific.
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6.2 Banded System Factorization and Solver Routines

The banded system factorization and solver routines described in this section are
provided primarily for compatibility with the CM-200. They include a factoriza-
tion routine, a solver routine, and a combined factorization and solver routine for
each of the banded system types (tridiagonal, pentadiagonal, block tridiagonal,
and block pentadiagonal).

These routines support multiple instances and accept either real or complex data.
They provide the same algorithms as the unified banded system routines (see
Section 6.1.2), with the following exceptions:

» The gen_tridiag_solve routine does not allow you to specify an algorithm.
It uses substructuring with cyclic reduction (CMSSL_substr_cr), unless the
axis along which the diagonal elements lie (axis vector_axis in the argu-
ment list) is serial (the recommended layout), in which case standard
Gaussian elimination is used.

= The algorithm CMSSL_pge_plv_val is not available with these routines;
that is, you cannot supply a pivot value.

Like the unified banded system routines, the routines described in this section
require an interface block if you supply an array section, rather than an entire
array, for the B, a, b, c, d, or e arguments. Refer to Section 6.1.4 for an example.

The man page that follows provides calling sequences, argument definitions, and
usage information. Data is set up in the same way as for the unified banded sys-
tem routines.

Version 3.1, June 1993
280 Copyright © 1993 Thinking Machines Corporation



Chapter 6. Linear Solvers for Banded Systems Banded System Solvers

Banded System Factorization
and Solver Routines

Given one or more instances of a tridiagonal, block tridiagonal, pentadiagonal, or block
pentadiagonal matrix A, the routines described below factor A, solve the system(s) AX =
B (where B is an array containing one or more right-hand sides), and overwrite B with the
solution. Pairwise pivoting is available for tridiagonal systems. A and B must have the
same data type (real or complex) and precision (single or double). In the syntax below, the
solution X and the right-hand-side B are both represented by the array B.

SYNTAX

gen_tridiag_factor (c, b, a, vector_axis, tolerance, work, type, ier)
gen_tridiag_solve_factored (B, c, b, a, vector_axis, tolerance, work, type, ier)
gen_tridiag_solve (B, ¢, b, a, vector_axis, tolerance, ier)

gen_pentadiag_factor (e, d, ¢, b, a, vector_axis, tolerance, work, type, ier)
gen_pentadlag_solve_factored (B, e, d, ¢, b, a, vector_axis, tolerance, work, type, ier)
gen_pentadiag_solve (B, e, d, ¢, b, a, vector_axis, tolerance, type, ier)
block_tridiag_factor (c, b, a, vector_axis, tolerance, work, type, nblock, ier)
block_tridiag_solve_factored (B, c, b, a, vector_axis, tolerance, work, type, ier)
block_tridiag_solve (B, ¢, b, a, vector_axis, tolerance, type, nblock, ier)
block_pentadiag_factor (e, d, ¢, b, a, vector_axis, tolerance, work, type, nblock, ier)
block_pentadiag_solve_tactored (B, ¢, d, ¢, b, a, vector_axis, tolerance, work, type, ier)
block_pentadiag_solve (B, e, d, ¢, b, a, vector_axis, tolerance, type, nblock, ier)

deallocate_banded_solve (work)

ARGUMENTS

In the descriptions below, the following terms are used to refer to the banded system
routines: The factor routines are those ending with the suffix _factor. The solve rou-
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tines are those ending with the suffix _solve_factored. The factor-and-solve routines
are those ending with the suffix _solve. The routines prefixed with gen_ are referred to
as the elementwise routines; the routines prefixed with block_ are the block routines.

B

CM array that contains one or more right-hand sides. Must have
the same data type and precision as ¢, b, and a (for a tridiagonal
system) or e, d, ¢, b, and a (for a pentadiagonal system). The solve
and factor-and-solve routines overwrite this array with the
solution.

For the elementwise banded system routines, you may set up B in
either of the following ways:

B may have rank one greater than that of e, d, ¢, b, and a.
The first axis counts the right-hand sides and must be
defined as :serial. Axis vector_axis counts the elements
within each right-hand side. The remaining axes are
instance axes that match those of e, d, ¢, b, and a in extent,
layout, and order of declaration.

If there is only one right-hand side per instance, you may
omit the first axis. That is, B may have the same rank as
e, d, ¢, b, and a. Axis vector_axis counts the elements
within each right-hand side. The remaining axes are
instance axes that match those of e, d, ¢, b, and a in extent,
layout, and order of declaration.

For the block banded system routines, you may set up B in either
of the following ways:

B may have rank equal to that of e, d, ¢, b, and a. The first
axis counts the elements within the subvectors to be mul-
tiplied by the blocks of A in the equation Ax = B. This axis
must be defined as :serial, and has extent n if the blocks
are n X n. The second axis counts the right-hand sides, and
must also be defined as :serial. Axis vector_axis counts
the subvectors within each right-hand side. The remain-
ing axes are instance axes that match those of e, d, ¢, b,
and a in extent, layout, and order of declaration.

If there is only one right-hand side per instance, you may
omit the second axis. That is, B may have rank one less
than that of e, d, ¢, b, and a. The first axis counts the ele-
ments within the subvectors, must be defined as :serial,
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and has extent n if the blocks are n X n. Axis vector_axis
counts the subvectors within each right-hand side. The
remaining axes are instance axes that match those of e, d,
¢, b, and a in extent, layout, and order of declaration.

¢ba In tridiagonal or block tridiagonal systems: Real or complex CM
arrays containing the elements or blocks that form the upper (c),
main (b), and lower (@) diagonals of all instances of A. These three
arrays must be distinct and must have the same shape, layout, data
type, and precision. The last element or block along axis vector_
axis of ¢, and the first element or block along axis vector_axis of
a, are set to zero during execution.

For the elementwise tridiagonal routine, each array must have
rank greater than or equal to 1. The vector_axis argument
identifies the axis along which the diagonal elements lie.

For the block tridiagonal routine, each array must have rank
greater than or equal to 3. The first two axes count the rows and
columns of the blocks of A. These axes must be defined as :serlal,
and have the same extent since the blocks must be square. The
remaining axes include the instance axes (if any) and the axis
along which the blocks lie. These remaining axes must occur in

the same order in all three arrays. The vector_axis argument
identifies the axis along which the blocks lie.

e,dcba In pentadiagonal or block pentadiagonal systems: Real or
complex CM arrays containing the elements or blocks that form
the five diagonals of all instances of A. The array a represents the
lowermost diagonal; the array e represents the uppermost
diagonal. These five arrays must be distinct, but must all have the
same shape, layout, data type, and precision. The first element of
b, the last element of d, the first two elements of a, and the last two
elements of e are set to zero during execution.

For the elementwise pentadiagonal routine, e, d, ¢, b, and 4 must
have rank greater than or equal to 1. The vector_axis argument
identifies the axis along which the diagonal elements lie.

For the block pentadiagonal routine, e, d, ¢, b, and a must have
rank greater than or equal to 3. The first two axes count the rows
and columns of the blocks of A. These axes must be defined as
:serial, and have the same extent since the blocks must be square.
The remaining axes include the instance axes (if any) and the axis
along which the blocks lie. These remaining axes must occur in
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vector_axis

tolerance

work

1ype

the same order in all five arrays. The vector_axis argument
identifies the axis along which the blocks lie.

Scalar integer variable. The axis of e, d, ¢, b, and a along which
the diagonal elements or blocks of A lie. The value of vector_axis
must be at least 1, but less than or equal to the rank of ¢, d, ¢, b,
and a. Performance is best if the axis identified by vector_axis is
defined as :serial, and second best if it is defined as NEWS-
ordered.

Scalar real variable. Ignored on the CM-5.

Integer front-end array of rank 1 and extent > 20. Internal
variable. Upon completion of a factor routine, work contains
information required by the associated solve routine.

Integer that has one of the following symbolic constant values (or
the equivalent numeric value):

CMSSL _pipeline_ge (3)
Pipelined Gaussian elimination.

CMSSL_pge_piv (9)
Pipelined Gaussian elimination with pairwise
pivoting. This algorithm is available for tridiago-
nal systems only. If you specify it with a
pentadiagonal or block system, the routine uses
CMSSL_pipeline_ge instead.

CMSSI._substr_cr (1)
Substructuring with cyclic reduction.

CMSSL_substr_ber (4)
Substructuring with balanced cyclic reduction.

CMSSL_substr_pge (2)
Substructuring with pipelined Gaussian elimina-
tion.

CMSSL_substr_transp (5)
Substructuring with transpose. This algorithm is
available for tridiagonal systems only. If you
specify it with a pentadiagonal or block system,
the routine returns ier = -5.
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If the axis along which the diagonal elements or blocks lie (axis
vector_axis) is serial, the routines always use pipelined Gaussian
elimination (with pivoting, if you selected pivoting and have a
tridiagonal system).

nblock Scalar integer variable. Specifies the blocking factor used
internally in the calculation of inverses. Must be < n. If you set
nblock to 0, the routines choose a predefined value that depends
on the size of the blocks you supply. For systems where n > 32,
there may be some benefit in experimenting with nblock to obtain
optimum performance. If you set nblock to an invalid value (for
example, a negative number), the routines use a blocking factor
of 1.

ier Scalar integer variable. Return code. Set to 0 upon successful
return, or to one of the following error codes:

-1 Input arrays have inconsistent ranks.
-2 Axes that should be serial are not.
-3 Input arrays have inconsistent data types.

-4 In one of the block routines, the first two axes of
e, d, ¢, b, or a do not have equal extents; or, the
B axis that counts the elements within the sub-
vectors to be multiplied by the blocks of A does
not have the same extent as the first axis of e, d,
¢, bora.

-5 Invalid type.
-6 Invalid vector_axis.
-7 The input arrays are not conformable.

-8 There is an error in the work parameter.

DESCRIPTION

The banded system factorization and solver routines perform the operations listed
below. The factorization routine performs the factorization A = LU for each matrix 4,
where L and U are lower and upper (respectively) bidiagonal or block bidiagonal, or
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lower and upper (respectively) tridiagonal or block tridiagonal matrices, or permuta-

tions thereof.

gen_tridiag_factor

gen_tridiag_solve_factored

gen_tridiag_solve

gen_pentadiag_factor

gen_pentadiag_solve_factored

gen_pentadiag_solve

block_tridiag_factor

block_tridiag_solve_factored

block_tridiag_solve

286

Given tridiagonal matrices A (represented by three
arrays), this routine factors the matrices.

Given the factors computed by gen_tridiag_factor,
and corresponding arrays B each containing one or
more right-hand-side vectors, this routine computes
the solutions to LUX = B, and overwrites each B with
the solution.

Given tridiagonal matrices A (represented by three
arrays), and corresponding arrays B each containing
one or more right-hand-side vectors, this routine
computes the solutions to AX (=LUX) = B, and
overwrites each B with the solution.

Given pentadiagonal matrices A (represented by five
arrays), this routine factors the matrices.

Given the factors computed by gen_pentadlag_factor,
and corresponding arrays B each containing one or
more right-hand-side vectors, this routine computes
the solutions to LUX = B, and overwrites each B with
the solution.

Given pentadiagonal matrices A (represented by five
arrays), and corresponding arrays B each containing
one or more right-hand-side vectors, this routine
computes the solutions to AX (=LUX) = B, and
overwrites each B with the solution.

Given block tridiagonal matrices A (represented by
three arrays), this routine factors the matrices.

Given the factors computed by block_tridiag_factor,
and corresponding arrays B each containing one or
more right-hand-side vectors, this routine computes
the solutions to LUX = B, and overwrites each B with
the solution,

Given block tridiagonal matrices A (represented by
three arrays), and corresponding arrays B each
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containing one or more right-hand-side vectors, this
routine computes the solutions to AX (=LUX) = B,
and overwrites each B with the solution.

block_pentadiag_factor Given block pentadiagonal matrices A (represented
by five arrays), this routine factors the matrices.

block_pentadiag_solve_factored Given the factors computed by block_pentadiag_
factor, and corresponding arrays B each containing
one or more right-hand-side vectors, this routine
computes the solutions to LUX = B, and overwrites
each B with the solution.

block_pentadiag_solve Given block pentadiagonal matrices A (represented
by five arrays), and corresponding arrays B each
containing one or more right-hand-side vectors, this
routine computes the solutions to AX (=LUX) = B,
and overwrites each B with the solution.

deallocate_banded_solve This routine deallocates the memory required by the
above factorization and solver routines.

Separation of the Factorization and Solution Phases. Calling a factor routine fol-
lowed by the associated solve routine is equivalent to calling the associated factor-
and-solve routine. However, separation of the factorization and solution phases allows
you to factor one or more instances of a matrix once, and then call the appropriate solve
routine multiple times, supplying the same factors but different right-hand-side arrays
each time — thus avoiding the overhead of repeated factorization of the same matrices.

Upon return from a factor routine, the three or five arrays that contained the matrices A
on input contain information required by the corresponding solve routine. The contents
of these arrays must therefore be preserved between the factor and solve calls.

Memory Allocation and Deallocation. Each time you call one of the factor routines, a
buffer, represented by the work argument, is allocated in memory. When you call one
of the solve routines, you must supply the value returned in work by the associated
previous factor call. The work buffer remains allocated until you explicitly deallocate
it with deallocate_banded_solve. Thus, you can call a factor routine, perform other op-
erations, and later call the corresponding solve routine one or more times. You can also
factor other sets of matrices, thus creating different work buffers, and keep multiple
work buffers allocated at the same time.
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Be sure to call deallocate_banded_solve to deallocate buffer space whenever you have
finished working with one set of factors. If you call a factor routine repeatedly without
deallocating buffer space, you will eventually run out of memory.

NOTES

Private Argument Values. The internal variable work is required for communicating
information between the factorization and solver phases. The application must not
modify the contents of this variable.

Preservation of Argument Values. Upon return from a factor routine, the arrays e, d,
¢, b, and a contain information required by the corresponding solve routine. The con-
tents of these arrays must therefore be preserved between the factor and solve calls.

Distinct Variables. No overlapping of variables is allowed in these routines.

Deallocation. Be sure to call deallocate_banded_solve to deallocate buffer space
whenever you have finished working with one set of factors. If you call a factor routine
repeatedly without deallocating buffer space, you will eventually run out of memory.

Caution. The buffer space associated with work depends on the size of the matrix or
matrices being factored. Therefore, if you call a factor routine more than once, be sure
to call deallocate_banded_solve to deallocate the associated buffer space between fac-
torization calls, or use a different work array. Otherwise, a second call with the same
work array will allocate different buffer space but represent it with the same work value
as in the first call, and the buffer space associated with the first call will become inac-
cessible.

Performance Hints. Performance is best if the axes listed below are defined as :serial,
and second-best if they are defined as NEWS-ordered.

= Theaxis of a, b, ¢, d, and e along which the blocks or elements lie (axis vector_
axis).

® The axis of B along which the subvectors or elements lie.

If you are working with a single- or multiple-instance elementwise tridiagonal or pen-
tadiagonal system with one right-hand side, and axis axis is local to a processing
element, you will probably achieve better performance by writing the operation in CM
Fortran than by using the CMSSL banded system solver routines. This is especially true
in the case of pentadiagonal systems.
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ADI Applications. The multiple-instance implementation of the banded system solvers
is excellent for applications of the alternating-direction implicit method, where a solu-
tion along each axis is required.

Need for Interface Blocks. If you supply an array section, rather than an entire array,
for B, a, b, ¢, d, or e, you must use an interface block to ensure that the subsection axis
corresponding to any array axis that is required to be serial, is also defined as serial.
For information about interface blocks and about passing array sections, refer to the
CM Fortran documentation set.

EXAMPLES

Sample CM Fortran code that uses the banded system factorization and solver routines
can be found on-line in the subdirectory

tridiag/cmf/

of a CMSSL examples directory whose location is site-specific.
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This chapter describes the Krylov-based iterative solvers included in the CMSSL.
Section 7.2 provides references.

Krylov-Based Iterative Solvers

One important approach to solving large sparse linear systems is the use of
iterative solvers based on Krylov subspace techniques. A well-known example
of these techniques is the conjugate gradient (CG) method, which is used for
symmetric positive definite systems. CG is a Lanczos-based method that reduces
the problem matrix to a symmetric tridiagonal matrix. There are also Lanczos-
based algorithms for non-symmetric systems; these entail the numerical
problems associated with non-symmetric tridiagonal systems. Another class of
non-symmetric algorithms is based on the Amoldi procedure with its greater
computational and storage requirements. Except for the Amoldi-based restarted
GMRES algorithm, all the algorithms currently included in the CMSSL are
Lanczos-based algorithms. '

For psuedo-code and references for many of the non-symmetric Lanczos-based
algorithms, see reference 1 listed in Section 7.2. References 2 and 3 also supply
useful background.

CMSSL Iterative Solver Routines

Given a matrix A, a right-hand-side vector b, and a preconditioner M = M1*M,
such that A~ = M;~1AM,-1 the gen_iter_solve routine (together with its
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associated setup and deallocation routines) solves the system Ax = b using
Krylov space iterative methods. Any matrix operations (that is, matrix vector or
vector matrix products) and preconditioning steps (for example, solve My = z)
are provided by the user using a reverse communication interface. The type of
matrix and its internal representation are completely arbitrary, and depend on the
user application. Similarly, the vectors can be represented by any rank array.

For details about the syntax, arguments, and usage of the iterative solvers, refer
to the man page at the end of this section.

Algorithms

The iterative solvers offer the algorithms listed below. For detailed information
about the algorithms, see the indicated references. (Full references are provided
in Section 7.2.)

CMSSL_cg Conjugate gradient. A Lanczos-based
algorithm for symmetric positive definite
systems. (Note that this method will not
work for non-symmetric systems.) See
reference 4.

CMSSL_cgs Conjugate gradient squared of
Sonneveld. See reference 5.

CMSSL_bcg Bi-conjugate gradient of Fletcher. See
reference 6.

CMSSL_bicgstab Bi-conjugate gradient with stabilization

of Van der Vorst. See reference 7.

CMSSL _bicgstab2 Bi-conjugate gradient with stabilization
of Gutknecht. See reference 8.

CMSSL_gmres Restarted Generalized Minimal Residual
algorithm. See reference 9.

CMSSL_gmrcgs Transpose-free Quasi-Minimal Residual
(QMR) algorithm of Freund. See
reference 10.

CMSSL_gmrial QMR with with a three-term look-ahead
Lanczos algorithm of Freund, Gutknecht
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CMSSL_gmr2

CMSSL_gmrs

CMSSL_gmrbicgstab

CMSSL_gmrbicgstab2

CMSSL_qcgs

7.1.3 Acknowledgments

and Nachtigal. See references 11, 12,
and 13.

QMR based on two-term recursions for
generating the Lanczos basis vectors
without look-ahead. See reference 14.

QMR squared of Freund and Szeto. See
reference 15.

QMR based on BICSTAB of Chan, Szeto
and Tong. See reference 16.

A modified version of QMRBICGSTAB.
See reference 16.

Quasi-minimized CGS. See reference 17.

We wish to thank Roland Freund and Noel Nachtigal for providing us with the
original Fortran 77 version of their code. We have converted their code to CM
Fortran and included it in the algorithms available in gen_iter_solve.

7.1.4 Example

The example below shows how to use the iterative solvers, and is based on the
information in the man page. The application in this example provides three rou-

tines:

trid_matvec (2, y, @, b, ¢, n)

trid_vecmat (2, y, @, b, ¢, n)

diag_solve (2, y, M, n)

Multiplies Ay and places the results in z.
A is represented by the diagonals a, b,
and c.

Multiplies yA and places the results in z.
A is represented by the diagonals a, b,
and c.

Solves the system Mz = y.
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call gen_iter_solve_setup(setup_iter,x,info,ier)
ido = CMSSL_IDO_START
do while ( (ido .ge. CMSSL_IDO_SOLVE_MIN) .and. (ido .le.
& CMSSL_IDO_SOLVE_MAX ) )

call gen iter_solve(ido,x,b,z,y,info,finfo,setup_iter
& sier)

reverse_comm: select case ( ido )

case ( CMSSL_IDO_AY )

c
c user supplied z = Ay
c
call trid matvec(z,y,a,b,c,n)
case ( CMSSL IDO_ATY )
c
c user supplied z = (A)T y
c .
call trid_vecmat(z,y,a,b,c,n)
case ( CMSSL_IDO_SOLVE_M )
c
c user supplied z = (M)-1 vy
c
call diag_solve(z,y,M 1,n)
case ( CMSSL_IDO_SOLVE_MT )
c
c user supplied z = ((M)T)-1 y
c .
call diag_solve(z,y,M_1,n)
case ( CMSSL_IDO_SOLVE M1 )
c
c user supplied z = (M1)-1 vy
c
call diag_solve(z,y,M1 1,n)
case ( CMSSI,_IDO_SOLVE_M2T )
c
c user supplied z = ((M2)T)-1 vy
c
call diag_solve(z,y,M2_1,n)
case ( CMSSI._IDO_SOLVE_M2 )
c
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c user supplied z = (M2)-1 vy

call diag_solve(z,y,M2_1,n)
end select reverse_comm

enddo

call deallocate iter_solve(setup_iter)
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Given a matrix A, a right-hand-side vector b, and a preconditioner M = M;*M, such that
A~ = M1~1AM;"1, the routines described below solve the system Ax = b using Krylov space
iterative methods. Any matrix operations (that is, matrix vector or vector matrix products)
and preconditioning steps (for example, solve My = z) are provided by the user using a
reverse communication interface. The type of matrix and its internal representation are
completely arbitrary, and depend on the user application. Similarly, the vectors can be
represented by any rank array.

SYNTAX

gen_iter_solve_setup  (setup, x_template, info, ier)
gen_lter_solve (ido, x, b, z, y, info, finfo, setup, ier)

deallocate_{ter_solve  (setup)

ARGUMENTS

setup Scalar integer variable. Internal variable. The initial value you
supply to gen_iter_solve_setup is ignored. When you call gen_
iter_solve or deallocate_iter_solve, supply the value assigned to
setup by the associated setup call. Do not change the value of
setup after the setup routine returns.

x_template Real (single- or double-precision) CM array with the same shape
and layout as x.

info Integer front-end array of rank 1 and length CMSSL _iter_info_size.

When you call gen_iter_solve_setup, set info as indicated below.
Do not change the values of info after the setup routine returns.
Upon return from gen_iter_solve, info(CMSSL_Iter_liter) contains
the current (last) iteration step number; info(CMSSL_iter_
kspace_used) contains the current size of the Lanczos subspace
used in restarted GMRES or the current number of Lanczos
vectors used by the look-ahead Lanczos algorithm (QMRLAL).

The values of the symbolic constants are defined in the CMSSL
header file.
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info(CMSSL_iter_algorithm)

CMSSL_cg

CMSSL_cgs

CMSSL_beg

CMSSL_bicgstab

CMSSL _bicgstab2

CMSSL_gmres

CMSSL_gmrcgs

CMSSL_qmrlal

CMSSL_gmr2

CMSSL_qmrs

Specifies the algorithm to be
used. Supply one of the val-
ues listed below. For
references, see Sections
7.1.2 and 7.2.

Conjugate gradient. A Lanczos-
based algorithm for symmetric
positive definite systems. (Note that
this method will not work for non-
symmetric systems.)

Conjugate gradient squared of Son-
neveld.

Bi-conjugate gradient of Fletcher.

Bi-conjugate gradient with stabi-
lization of Van der Vorst.

Bi-conjugate gradient with stabi-
lization of Gutknecht.

Restarted Generalized Minimal
Residual algorithm.

Transpose-free Quasi-Minimal
Residual (QMR) algorithm of
Freund.

QMR with with a three-term look-
ahead Lanczos algorithm of Freund,
Gutknecht and Nachtigal.

QMR based on two-term recursions
for generating the Lanczos basis
vectors without look-ahead.

QMR squared of Freund and Szeto.

CMSSL_gmrbicgstab QMR based on BICSTAB of Chan,
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CMSSL_gmrbicgstab2
A  modified version of

QMRBICGSTAB.
CMSSL_gcgs Quasi-minimized CGS.
info(CMSSL_lter_init) Determines the contents of

the initial guess, xp. Set to 0
to specify xp = 0; set to 1 to
use the initial input value of
x for xg.

info(CMSSL_lter_random_start) Determines the initial resid-
ual value, rg. Set to O to
specify ro = b - Axp; set to 1
to use a random value for rg.

info(CMSSL_iter_maxiter) Maximum number of itera-
tions.
info(CMSSL_iter_precond) Set to 1 for preconditioning,

or 0 for no preconditioning.
(See Description section for
a discussion of precondition-
ing.)

info(CMSSL_iter_kspace) If

info(CMSSL_lIter_algorithm)
= CMSSL_gmres

this parameter specifies the
maximum size of the Lanc-
zos subspace used by
GMRES (the maximum
number of Lanczos vectors
stored between restarts).

If

info(CMSSL _iter_algorithm)
= CMSSL_gmrlal

this parameter specifies the
maximum number of Lanc-
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info(CMSSL _iter_omega)

info(CMSSL_iter_residual)
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zos vectors to look ahead on
breakdown.

Specifies the convergence
criterion, ®. Set to 1 to use a
convergence criterion of

o=lriz/lblk

or set to 2 to use a conver-
gence criterion of © =

7 lloo / NNA Hloo I x 1 + 1] B leo
where

r=>b-Ax
7 Ik = Qr(DI™H{r2)I™..) Y
I 7 lleo = max |r(}|

For CMSSL_gmres, the
convergence criterion o is
set to the magnitude of the
last Givens rotation used in
reducing the upper
Hessenberg matrix to upper
triangular form.

The value you supply is used
only if you specified one of
the following algorithms:

CMSSL_gmrecgs
CMSSL_gmr2
CMSSL_qmrs
CMSSL_qmrial
CMSSL_gmrbicgstab
CMSSL_qmrbicgstab2
CMSSL_qgcegs

If set to 0, this parameter
causes gen_Iter_solve to test
an estimated residual for
convergence against the
convergence criterion, ®
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info(CMSSL_lter_output_x)

(see above) at the end of
each iteration loop.

If you set this parameter to
any value greater than 0,
gen_iter_solve explicitly
computes r = b - Ax every
info(CMSSL _iter_residual)
iterations. Thus, the extra
matrix vector product
needed to compute r can be
amortized over several
iterations. Convergence is
only checked every
info(CMSSL _iter_residual)
iterations.

If info(CMSSL_algorithm) =
CMSSL_gmrial, r = b - Ax is
explicitly computed every
iteration when info(CMSSL_
residual) is not equal to 0.

If you set this parameter to m
> 0, x will contain inter-
mediate values of the
solution before convergence
or breakdown every m itera-
tion steps. If m > info
(CMSSL_iter_maxiter), x is
guaranteed to contain the
most recent value on return
only when ido = CMSSL _
ido_end, CMSSL_Iido_error,
or CMSSL_ido_ breakdown.

If you set info(CMSSL_lter_
output_x) < 0, it is reset to
info(CMSSL_Iter_maxiter).
In this case, x is guaranteed
to contain the most recent
value on return only when
ido = CMSSL_ido_end.
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info(CMSSL_lter_kspace_used)

info(CMSSL_liter_liter)

The input value is ignored. If
info(CMSSL_iter_algorithm)
= CMSSL_gmres, this
parameter returns the size of
the Lanczos subspace used
by restarted GMRES during
the current iteration loop.

If

info(CMSSL_iter_algorithm)
= CMSSL_gmrial

this parameter returns the
number of Lanczos vectors
used during the look-ahead
procedure to avoid break-
down during the current
iteration loop.

The input value is ignored.
This parameter returns the
current iteration loop count.

ido Scalar integer variable used for reverse communication. The first
time you call gen_iter_solve in a reverse communication loop, set
ido = CMSSL_ido_start. On return, ido is set to one of the values
listed below. All symbolic constants are defined in the CMSSL
header file. M is the preconditioner, M = M1 M>, such that A~ =

Ml’lAMz'l.

CMSSL._ido_Ay The user application must perform
' the matrix vector multiplication Ay
and place the results in z.

CMSSL_ido_ATy The user application must perform
the matrix transpose vector multi-
plication, ATy, or equivalently the
vector matrix product, yTA, and place
the results in z.

CMSSL_ido_solve_M The user application must solve the
system Mz = y (compute M-ly and
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place the results in z). If M is the
identity I, replace z by the value in y.

CMSSL_ido_solve_MT The user application must solve the
system Mz = y (compute M-Ty and
place the results in z). If M is the
identity I, replace z by the value in y.

CMSSL_ido_soive_M1 The user application must solve the
system M1z = y (compute M;~'y and
place the results in z). If M; is the
identity I, replace z by the value in y.

CMSSL _ido_solve_M2T The user application must solve the
system M;Tz = y (compute M, Ty
and place the results in z). If M; is
the identity I, replace z by the value
iny.

CMSSL_ido_solve_M2 The user application must solve the
system M,z = y (compute M,~'y and
place the results in z). If M, is the
identity I, replace z by the value in y.

CMSSL_ido_end Convergence has occurred,; that is,
the convergence criterion  is < the
initial input value of finfo(CMSSL_
iter_tol).

CMSSL_ido_error The maximum number of iterations
specified in info(CMSSL_iter_
maxiter) has been reached without
convergence.

CMSSL_ido_breakdown A breakdown in the algorithm (for
example, division by 0) has
occurred.

During the reverse communication loop, when CMSSL_ido_solve_
min < ido < CMSSL_ido_solve_max, the algorithm is running
normally and has not yet converged. If the value of ido falls
outside this range, the algorithm has terminated without
convergence (that is, either the maximum number of iterations has
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been reached or the algorithm has suffered a breakdown from
which it cannot continue).

Real (single- or double-precision) CM array of any rank and
shape. On input, supply the initial guess to be used when
info(CMSSL_iter_init) = 1. If you set info(CMSSL_iter_output_x) =
m >0, the intermediate value of the solution is returned in x every
m iterations. When ido = CMSSL_ido_end, x contains the
converged solution. When ido = CMSSL _ido_error or CMSSL _ido_
breakdown, the value of x in the current iteration loop is returned.

Real (single- or double-precision) CM array with the same shape,
layout, and precision as x. Contains the right-hand side of the
system to be solved.

Real (single- or double-precision) CM array with the same shape,
layout, and precision as x. Input argument; used only after the user
application performs an operation that gen_lter_solve requested
through reverse communication. Must contain the results of the
user-supplied operation.

Real (single- or double-precision) CM array with the same shape,
layout, and precision as x. Used only when gen_iter_solve returns
with an ido value requesting the user application to operate on an
array. Contains the array to be operated on by the user application.

Real front-end array with rank 1, the same precision as x, and
length CMSSL_iter_finfo_size (a symbolic constant defined in the
CMSSL header file). On input, set the values of finfo to supply the
following information:

finfo(CMSSL_iter_tol) On input, this parameter
specifies the convergence
tolerance, tol. If ® < tol,
gen_iter_solve returns with
ido = CMSSL_ido_end, indi-
cating that convergence has
occurred.

On output, this parameter
contains the value of ® com-
puted for the current
iteration loop.
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Jfinfo(CMSSL_iter_anorm) Estimate of the infinity norm
of A, ||A]l«, to be used in
computing the convergence
criterion when info(CMSSL_
iter_omega) = 2.

You can supply different values for these parameters each time
you call gen_iter_solve.

ier Scalar integer variable. Error code. Upon return from gen_iter_
solve_setup, contains one of the _following values:

0 No error condition.

-CMSSL_iter_algorithm info(CMSSL_iter_algorithm) is
invalid.

-CMSSL_lter_kspace  info(CMSSL_Iter_kspace) is
invalid for info(CMSSL_iter_
algorithm) = CMSSL_gmres or
CMSSL_gmrial.

-CMSSL_Iter_maxiter  info(CMSSL_iter_maxiter) is < 1.

The ier argument to the gen_iter_solve routine is reserved for
future use.

DESCRIPTION

Setup and Deallocation. To use the iterative solvers, follow these steps:

1. Call gen_iter_solve_setup.

This routine generates a setup ID and returns it in the sefup argument. You
must supply this sezup value in all subsequent gen_iter_solve and deallocate_
iter_solve calls associated with this setup call.

2. Call gen_iter_solve. Supply the setup value assigned by the setup routine, and
the same info values you supplied to gen_iter_solve_setup. In particular,
different algorithms require different amounts of internal storage; so if you
change the algorithm, call deallocate_lter_solve and then call gen_iter_
solve_setup again. (This involves very little overhead compared to the rest of
the algorithm).
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Each call to gen_iter_solve runs the specified algorithm until intermediate
operations must be supplied by the user application; gen_iter_solve then
requests these operations through the reverse communication interface.

3. When gen_iter_solve returns with an ido value requesting action by the user
application, you must supply the requested operation, place the results in the
array z, and call gen_iter_solve again. Continue until the returned ido value
indicates convergence, maximum number of iterations exceeded, or break-
down.

4. You can solve other systems by repeating Steps 2 and 3, as long as the rank
and shape of x remain the same and the input values you supplied in the setup
routine’s info argument still apply. If the rank and shape of x change or you
need to change any of the info values, start with Step 1 again.

5. After all gen_iter_solve calls associated with the same call to gen_iter_solve_
setup, call deallocate_iter_solve to deallocate the memory required by the set-
up routine.

More than one setup may be active at a time, as long as they use different setup param-
eters. That is, you may call the setup routine more than once without calling the
deallocation routine.

Iteration. The gen_iter_solve routine attempts to solve Ax = b using one of several
Krylov space iterative solution algorithms. Depending on the algorithm and the value
of the parameter info(CMSSL_iter_residual), either the actual residual r = b - Ax or an
estimate of the residual is used to compute a convergence parameter @ which is
returned in finfo(CMSSL _iter_tol) at each step of the iteration. The iterations continue
until o < the initial input value of finfo(CMSSL_lter_tol), an algorithmic breakdown has
occurred, or the number of iterations has exceeded the value supplied in info(CMSSL_
iter_maxditer). '

Reverse Communication Interface. The iterative solvers require the user application
to provide

*  routines that multiply a given vector y by A or AT (alternatively, a vector matrix
multiplication, ATy = (yTA)T)

*  routines that solve the systems Mz =y, MYz =y, Miz =y, MyTz =y, and Moz = y,
where M = MM, and the preconditioned matrix A~ = M;"1AM,"1

When gen_iter_solve requires one of these user-supplied operations, it returns, setting
ido to indicate which operation is required, and providing the vector y upon which the
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user application is to operate. The user-supplied routine must place the results of the
requested operation in z and call gen_iter_solve again.

Preconditioning. If you set info(CMSSL_iter_precond) = 1, gen_lter_solve asks you to
solve systems involving the preconditioner, M = M1 M,, where the preconditioned sys-
tem is given by A~ = M;"1 A My™1, A"Mox = My~ 1b.

NOTES

Include the CMSSL Header File. The iterative solvers use symbolic constants defined
in the CMSSL header file. Therefore, you must include the line

INCLUDE ' /usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls these routines.

Acknowledgments. We wish to thank Roland Freund and Noel Nachtigal for
providing us with the original Fortran 77 version of their code. We have converted
their code to CM Fortran and included it in the algorithms available in gen_iter_solve.

EXAMPLES

Sample CM Fortran code that uses the iterative solvers can be found on-line in the
subdirectory

iter-solvers/cnf

of a CMSSL examples directory whose location is site-specific.
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Chapter 8

Eigensystem Analysis

This chapter describes the CMSSL eigensystem analysis routines. Section 8.1
provides guidelines for choosing the appropriate routine. Sections 8.2 through
8.9 describe the routines in detail. Section 8.10 lists references.

The CMSSL includes the following eigenanalysis routines:

Reduction to symmetric tridiagonal form and eigensystem analysis of real
symmetric tridiagonal matrices:

sym_tred

sym_to_tridiag

tridiag_to_sym

deallocate_sym_tred

sym_tridiag_eigenvalues

Version 3.1, June 1993
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Reduces one or more Hermitian matrices to
real symmetric tridiagonal form. (Section
8.2)

For each matrix instance, transforms the
coordinates of arbitrary vectors from the
basis of the original Hermitian matrix to that
of the tridiagonal matrix. (Section 8.2)

For each matrix instance, transforms the
coordinates of arbitrary vectors from the
basis of the tridiagonal matrix to that of the
original Hermitian matrix. (Section 8.2)

Deallocates the processing element storage
space required by the above three routines.
(Section 8.2)

Computes all the eigenvalues of one or more
real symmetric tridiagonal matrices of the
same order. (Section 8.3)
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sym_tridiag_elgenvectors

Determines the eigenvectors corresponding
to a set of eigenvalues of one or more real
symmetric tridiagonal matrices of the same
order. (Section 8.4)

Eigensystem analysis of dense Hermitian matrices:

sym_tred_elgensystem

Computes the eigenvalues and, if desired, the
eigenvectors of one or more Hermitian
matrices. Combines the functionality of the
sym_tred, sym_tridiag_eigenvalues, sym_
tridiag_eigenvectors, tridiag_to_sym, and
deallocate_sym_tred routines. (Section 8.5)

Eigensystem analysis of dense real symmetric matrices:

sym_tred_gen_eigensystem

sym_jacobi_eigensystem

sym_lanczos

Given a CM array containing one or more
real symmetric matrices A, and a CM array
containing corresponding positive definite
matrices B, this routine solves AQ = BQA,
computing the eigenvalues A and, if desired,
the eigenvectors for each instance. (Section
8.6)

Uses Jacobi rotations to compute the
eigenvalues and, if desired, the eigenvectors
of one or more dense real symmetric
matrices. (Section 8.7)

Finds selected eigenpairs of a linear operator,
L, that is real and symmetric with respect to a
positive semi-definite real matrix B (BL =
LTB). Uses the implicit restarted k-step
Lanczos update algorithm. Has an associated
setup routine (sym_lanczos_setup) and
deallocation routine (deallocate_sym_
lanczos_setup). (Section 8.8)

Eigensystem analysis of dense real matrices:

gen_arnoldi

310

Finds selected solutions {A, x} to the real
standard or generalized eigenvalue problem
Lx = ABx. B is symmetric and can be positive
semi-definite; it is the identity for the
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standard eigenproblem. The algorithm used
is a k-step Arnoldi algorithm with implicit
restart. This routine has an associated setup
routine (gen_arnoldi_setup) and deallocation
routine (deallocate_gen_arnoldi_setup).
(Section 8.9)

The sym_lanczos and gen_arnoldi routines also apply perform eigensystem anal-
ysis of sparse systems.

Introduction

The selection of a CMSSL eigenanalysis routine depends on
s whether the problem is Hermitian
* how many eigenvalues and/or eigenvectors are desired

= whether the system is dense or sparse

If the system is not Hermitian, the only function provided is gen_arnoldi, which
allows you to compute selected eigenvalue-eigenvector pairs. In the current
implementation, the projected matrix (that is, the projection of the original prob-
lem onto the basis defined by the Amoldi vectors) is stored and processed on the
partition manager (this applies to sym_lanczos as well). Because of the perfor-
mance difference between the CM and the partition manager, the routine is aimed
at computing an invariant subspace of dimension much smaller than the original
problem. Under this condition, the matrix vector operation, which is performed
on the CM, dominates the computation. Communication with the gen_arnoldi
routine occurs through reverse communication; the user must provide a matrix
vector product on request through this interface. One may wish simply to write
a subroutine to provide this matrix vector product. However, the reverse
communication mechanism may eliminate the need to encapsulate this matrix
vector product within a separate subroutine. In either case, it is important to
exploit whatever structure the problem may have when computing this matrix
vector product, since it will be the most time-consuming part of the computation
for large systems. The choice of the subspace parameters k and v may influence
the convergence significantly. The parameter nv should be at least equal to 2k,
but selecting a larger value may often accelerate convergence if there is enough
memory to accomodate the nv Amoldi vectors. When the desired eigenvalues are
clustered, it is sometimes faster to compute more eigenpairs than originally
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sought, but with a tolerance parameter 20l larger than the one desired (012, say).
Assume that p eigenpairs are sought, choose k >p and toll >> tol2. By the time
the k eigenpairs are converged with the prescribed tolerance oll, the first p
eigenpairs may have converged with an accuracy of t0/2. This may happen in
fewer iterations than would be required for convergence had k been set to p and
the tolerance parameter set to t0l2. All of these choices are problem-dependent;
it will take some experience to find the best configuration for a given problem
class. In general, it does not take much more time to compute the eigenvalues and
eigenvectors (iparam(2) > 0) than to compute the eigenvalues only (iparam(2)
< 0) (this also applies to sym_lanczos). This attractive feature is a property of the
k-step Arnoldi algorithm with implicit restart (see reference 12 in Section 8.10).

If the system is real symmetric and sparse and only selected eigenpairs are
desired, it is advisable to use sym_lanczos, the Hermitian version of gen_arnoldi.
All the above comments apply here as well. The case where interior eigenvalues
are desired deserves special consideration. In this case, the Lanczos algorithm
will converge very slowly, if at all. The sym_lanczos routine (and the gen_arnoldi
routine) should then be used in shift-and-invert mode through the reverse com-
munication mechanism, as described in Sections 8.8 and 8.9. Instead of
performing a matrix vector operation at each step, one must solve the linear
system of equations (A-cI)x = b. The operator (4-c/)-1 has the same eigenvec-
tors as A, but the eigenvalues in the vicinity of o are well separated, while those
at both extremes of the spectrum are clustered around zero. As a result, conver-
gence for eigenvalues located around ¢ is dramatically improved. Of course, the
problem is now to solve an indefinite system of equations. For sparse systems,
it is tempting to use an iterative method. However, this only makes sense if the
system of equations can be preconditioned efficiently. Otherwise, the number of
matrix vector operations used repeatedly in the iterative solutions of the linear
systems will be prohibitive. In fact, there will be about as many matrix vector
operations as would be needed for the standard Lanczos algorithm to converge.
In general, you may enhance convergence by applying the algorithm to a func-
tion of the matrix where the desired part of the transformed spectrum is separated
from the unwanted part.

If the system is dense Hermitian and all eigenpairs are required, then one should
use sym_tred_eigensystem. For most cases, the Jacobi method implemented in
sym_jacobl_eigensystem does not seem to provide a competitive alternative at
this point for comparable accuracy. The sym_tred_eigensystem routine encapsu-
lates four routines: sym_tred, which reduces the matrix to tridiagonal form; sym_
tridiag_eigenvalues, which computes all the eigenvalues of the tridiagonal
matrix; sym_tridiag_eigenvectors, which computes all or selected eigenvectors
using inverse iteration; and tridiag_to_sym, which transforms the tridiagonal
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eigenvectors to the eigenvectors of the original matrix. There is a great deal of
flexibility to be gained by calling these routines separately. Indeed, it is often true
that out of a very large vector space, only a limited number of eigendirections
are useful. By calling the four eigenroutines individually, one can select the
eigenvectors of interest after inspecting the eigenvalue spectrum. By doing so,
one can also handle much larger problems than when all the eigenvectors are
computed.

It is not currently possible to compute selected eigenvalues only. However, the
performance of sym_tridiag_eigenvalues (which implements parallel bisection
and takes advantage of IEEE arithmetic) is sufficient that the time to compute all
the eigenvalues is usually very small compared to the reduction and eigenvector
extraction. Note also that the routines that solve the tridiagonal eigenproblem do
not take advantage of deflation. Therefore, for large problems, you may wish to
check for potential deflations beforehand (see Sections 8.3.3 and 8.4.4).

The sym_tridiag_eigenvalues and sym_tridiag_eigenvectors routines include two
parameters to set:

= The absolute error tolerance for the computed eigenvalues, which can be
set as small as desired (machine precision times the 1-norm of the matrix
is the default). Setting the tolerance to a higher value is not recommended,
as it may cause inverse iteration to fail later.

® The grouping criterion for eigenvalues. The eigenvectors associated with
grouped eigenvalues are orthogonalized. This parameter is not usually an
input parameter in standard scientific libraries. We provide it because its
usual value, 10-3|| T ||, which is the default value in sym_tridiag_eigen-
vectors, is much too large in general, and entails unnecessary
reorthogonalization between eigenvectors, an unbalanced and expensive
computation on distributed memory architecture. Although some new
algorithm may solve this problem elegantly in the near future, we strongly
recommend setting the group argument to a much smaller value than the
default (10-5)| T ||, or even 10~ T ||o). Of course, one should assess the
orthogonality of the eigenvectors obtained. One should also realize that
orthogonality to machine precision is unnecessary for most practical
applications. Orthogonality to the square root of machine precision usu-
ally suffices.

All the above considerations for sym_tred_eigensystem also apply to sym_tred_
gen_eigensystem, which computes all the eigenpairs of dense real symmetric
general eigensystems. If you want to compute only selected eigenvectors of such
systems, you can call the components of sym_tred_gen_eigensystem separately,

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation 313



CMSSL for CM Fortran (CM-5 Edition)

314

as described in Section 8.6. Note that you can also use sym_lanczos and gen_
arnoldi to solve generalized eigenvalue problems by setting the input argument
type to °G.’

Finally, nothing prevents the use of sym_lanczos or gen_arnoldi in shift-and-in-
vert mode to extract a few eigenpairs in the middle of the spectrum of a dense
matrix. In that case, a dense solver routine can be used at each iteration. It is
unlikely that this approach will compete with the Householder reduction to tri-
diagonal form when the matrix fits into memory. However, even though the
CMSSL does not currently provide eigensolvers with external storage, it is pos-
sible, using this approach, to compute selected eigenpairs of a matrix that is too
large to fit into core memory. The first step of an out-of-core dense algorithm is
to factor the matrix A~ (where o is the value in the neighborood of which a few
eigenvalues are sought) using the CMSSL external LU factorization routine.
Then call the external LU solver routine with sym_lanczos (for symmetric prob-
lems) or gen_amoldi (for non-symmetric problems) in shift-and-invert mode.
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8.2 Reduction to Tridiagonal Form
and Corresponding Basis Transformation

The CMSSL provides a routine that reduces Hermitian matrices to real symmetric
tridiagonal form using Householder transformations. After the reduction occurs,
two other routines can be used to transform the coordinates of sets of vectors
from the bases of the original Hermitian matrices to those of the tridiagonal
matrices, or vice versa. The routines are as follows:

sym_tred Reduces one or more Hermitian matrices to real
symmetric tridiagonal form.
sym_to_tridiag For each matrix instance, transforms the coordinates

of arbitrary vectors from the basis of the original
Hermitian matrix to that of the tridiagonal matrix.

tridiag_to_sym For each matrix instance, transforms the coordinates
of arbitrary vectors from the basis of the tridiagonal
matrix to that of the original Hermitian matrix.

deallocate_sym_tred  Deallocates the processing element storage space
required by the above routines.

Detailed descriptions of these routines are provided in the man page at the end
of this section.

8.2.1 Blocking and Load Balancing

The reduction to tridiagonal form and basis transformation routines use blocking
and load balancing to enhance performance. These strategies are described in the
section on computation of block cyclic permutations in Chapter 14.

8.2.2 Numerical Stability

The routines described in this section are stable.
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Reduction to Tridiagonal Form
and Corresponding Basis Transformation

Given one or more Hermitian matrices, the sym_tred routine uses Householder transforma-
tions to reduce each matrix to real symmetric tridiagonal form. Given the transformations
performed by sym_tred, the sym_to_tridiag routine transforms the coordinates of arbitrary
vectors from the basis of the original Hermitian matrix to that of the tridiagonal matrix; the
tridiag_to_sym routine transforms the coordinates of arbitrary vectors from the basis of the
tridiagonal matrix to that of the original Hermitian matrix. The deallocate_sym_tred routine
deallocates the storage space required by sym_tred, sym_to_tridiag, and tridlag_to_sym.

SYNTAX

setup = sym_tred (d, e, A, n, row_axis, col_axis, nblock, ier)
sym_to_tridiag (B, A, setup, nrhs, ier)
tridiag_to_sym (B, A, setup, nrhs, ier)

deallocate_sym_tred (setup)

ARGUMENTS

In this description, A and B refer to the active matrices within the CM arrays A and B
with which the routines work. A and B may be contained (as the upper left-hand sub-
matrices) in larger matrices within A and B, respectively. Details are provided below.

setup - Scalar integer variable. Setup ID. When you call sym_to_tridiag,
tridiag_to_sym, or deallocate_sym_tred, you must supply the value
returned by sym_tred.

d Real CM array of the same rank as A. Axis row_axis must have
extent 1; axis col_axis must have extent > n. The remaining axes
are instance axes matching those of A in order of declaration and
extents. Thus, each vector within d corresponds to a matrix A
within A. Upon completion of sym_tred, elements 1 through n of
each vector in d contain the main diagonal elements of the real
symmetric tridiagonal matrix to which the corresponding matrix
A was reduced.

Version 3.1, June 1993
316 Copyright © 1993 Thinking Machines Corporation



—

Chapter 8. Eigensystem Analysis Reduction to Tridiagonal Form

e Real CM array of the same rank as A. Axis row_axis must have
extent 1; axis col_axis must have extent > n. The remaining axes
are instance axes matching those of A in order of declaration and
extents. Thus, each vector within e corresponds to a matrix A
within A. Upon completion of sym_tred, elements 2 through n of
each vector in e contain the off-diagonal elements of the real
symmetric tridiagonal matrix to which the corresponding matrix
A was reduced. (The first element in each vector in e is
undefined.)

B CM array of the same data type as A. When you call sym_
to_tridiag or tridiag_to_sym, B must contain one or more instances
of a rank-2 array, B; each B, in turn, must consist of the vector(s)
whose coordinates are to be transformed by sym_to_tridiag or
tridiag_to_sym. Upon completion of sym_to_tridiag or tridiag_to_
sym, each B within B is overwritten with same vectors expressed
in the coordinates of the new basis.

The instance axes of B must match those of A in order of
declaration and extents. Each B within B has dimensions n X nrhs,
and may consist of the upper left-hand n X nrhs elements of a
larger matrix. The rows and columns of B must be counted by
axes row_axis and col_axis, respectively.

A Real or complex CM array containing one or more Hermitian

matrices, A. Each A within A is assumed to be dense and square
with dimensions n X n. The axes identified by row_axis and
col_axis may have extents greater than n; that is, each instance of
A may be contained in the upper left-hand n X n elements of a
larger matrix within A.
Upon completion of sym_tred, each A within A is overwritten with
information about the Householder transformations used to
reduce A to a tridiagonal matrix. When you call sym_to_tridiag or
tridiag_to_sym, you must supply the values contained in A upon
completion of sym_tred.

n Scalar integer variable. The number of rows and columns in each
Hermitian matrix A within A.

row_axis Scalar integer variable. The axis of A that counts the rows of each
Hermitian matrix A.
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col_axis

nblock

nrhs

ier

DESCRIPTION

Scalar integer variable. The axis of A that counts the columns of
each Hermitian matrix A.

Scalar integer variable. Blocking factor. Use these guidelines
when choosing an nblock value:

» For typical applications, nblock = 2 is a good
choice. For very large matrices, nblock = 4 or even
8 may yield faster reduction.

» nblock should always be < n; nblock values > n use
excess time and especially memory.

» The amount of auxiliary storage used is propor-
tional to nblock, so if memory is tight, a smaller
nblock may be a better choice.

= For optimal performance, ensure that the subgrid
length is a multiple of nblock in both dimensions.
If that is not possible, choose an nblock value that
is smaller than the subgrid lengths in both dimen-
sions.

Scalar integer variable. The number of vectors in each B within
B.

Scalar integer variable. Return code; set to O upon successful
return. The following codes indicate errors:

-1 Length of axis row_axis of A is < n; must be > n.

-2 Length of axis col_axis of A is < n; must be > n.

-8 Rank of A is < 2; must be > 2.

-32  Data type of A, B, d, or e is not real or complex.

-64  row_axis or col_axis is invalid. 1 < row_axis,
col_axis < rank (A) must be true, and row_axis and
col_axis must not be equal.

~-128 nblock is invalid; must be > 1.

Given a real or complex CM array A containing one or more Hermitian matrices A, the
routines described in this man page perform the following operations:

sym_tred

318

T = QHAQ (T'is stored in d and e)
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sym_to_tridiag B=(QB
tridlag_to_sym B=QHB

The sym_tred routine uses Householder transformations to reduce each A to real sym-
metric tridiagonal form. Given the transformations performed by sym_tred, and a CM
array B containing one or more instances of a rank-2 array B of vectors, the sym_to_tri-
diag routine transforms the coordinates of each set of vectors from the basis of the
original Hermitian matrix to that of the tridiagonal matrix; the tridiag_to_sym routine
transforms the coordinates of each set of vectors from the basis of the tridiagonal
matrix to that of the original Hermitian matrix.

The deallocate_sym_tred routine deallocates the storage space required by sym_tred,
sym_to_tridiag, and tridiag_to_sym.

Setup and Deallocation. The sym_tred routine allocates processing element storage
space and returns a setup ID. You must supply this setup ID in subsequent sym_to_
tridiag and tridiag_to_sym calls as long as you are working with the same reduction;
you must also supply it to deallocate_sym_tred. You can follow one call to sym_tred
with multiple calls to the sym_to_tridiag and tridiag_to_sym routines.

The deallocate_sym_tred routine deallocates the memory needed for a particular reduc-
tion, and invalidates the associated setup ID. Attempts to use a deallocated setup ID
result in errors.

You can work with more than one set of reductions at a time by calling sym_tred more
than once without calling deallocate_sym_tred. Be sure to supply the correct setup ID
in each subsequent sym_to_tridlag or tridiag_to_sym call. When you have finished
working with a reduction, be sure to use deallocate_sym_tred to deallocate the
associated memory. Repeated calls to sym_tred without deallocation can cause you to
run out of memory.

Reduction to Tridiagonal Form. The sym_tred routine uses Householder transforma-
tions to reduce each A within A to real symmetric tridiagonal form. Upon completion
of sym_tred, each A within A is overwritten with information about the Householder
transformations used to reduce A to a real symmetric tridiagonal matrix. Each resulting
tridiagonal matrix is represented by the corresponding instances of the vectors d and e.

Basis Transformation. The sym_to_tridiag routine transforms the coordinates of the
vectors in each B within B from the basis of the corresponding original Hermitian
matrix to that of the tridiagonal matrix. The tridiag_to_sym routine transforms the
coordinates of the vectors in each B from the basis of the corresponding tridiagonal
matrix to that of the original Hermitian matrix. Upon completion of sym_to_tridiag or
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tridiag_to_sym, each B within B is overwritten with same vectors expressed in the
coordinates of the new basis.

NOTES

Distinct Variables. The input CM arrays A and B must be distinct variables. The arrays
d and e must also be distinct.

Include the CMSSL Header File. The sym_tred routine is a function. Therefore, you
must include the line

INCLUDE ’/usr/include/cm/cmssl-cmf.h’

at the top of any program module that calls these routines. This file declares the types
of the CMSSL functions and symbolic constants.

Preservation of Argument Values. The internal variable setup is required for com-
municating information between the reduction to tridiagonal form routine and the basis
transformation routines. The application must not modify the contents of this variable.

Numerical Stability. These routines are stable.

Numerical Complexity. Reduction to tridiagonal form uses (4/3)n3 floating-point
operations. However, because sym_tred does not exploit symmetry, the CM imple-
mentation actually uses 2n3 floating-point operations. The sym_to_tridiag and tridiag_
to_sym routines use 2n2*nrhs floating-point operations.

EXAMPLES

Sample CM Fortran code that uses the routines described above can be found on-line
in the subdirectory

tred/cmf/

of a CMSSL examples directory whose location is site-specific.
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8.3 Eigenvalues of Real Symmetric Tridiagonal Matrices

8.3.1

The sym_tridiag_eigenvalues routine computes all the eigenvalues of one or more
real symmetric tridiagonal matrices of the same order. A detailed description of
this routine is provided in the man page at the end of this section.

Parallel Bisection Algorithm

You can compute the spectra of one or more tridiagonal matrices with sym_ tri-
diag_elgenvalues. Subsequently, you can compute selected, or possibly all,
eigenvectors using sym_tridiag_eigenvectors.

Parallel bisection is the algorithm currently implemented for the eigenvalue com-
putation. The serial bisection algorithm (see reference 3 in Section 8.10) extracts
one eigenvalue at a time by recursively dividing in two equal parts an initial
interval known to contain the desired eigenvalue. In a data parallel environment,
a matrix of order N is partitioned over Njn processing elements, and each proces-
sing element can compute up to n eigenvalues, provided it has access to all the
matrix elements. Processing element i computes eigenvalues ni + 1, . . . , n(i+1),
thereby slicing its own portion of the spectrum. The union of all Gershgorin disks
provides an initial search interval which is known to contain all eigenvalues.

At each bisection step, one needs to determine the number of eigenvalues smaller
than the midpoint x of the current interval. This number is obtained by evaluating
the non-linear Sturm sequence. Independent sequences corresponding to inde-
pendent eigenvalue computations can be evaluated concurrently on different
processing elements provided each processing element has a copy of the relevant
matrix. A preprocessing step therefore distributes a copy of the matrix to all pro-
cessing elements slicing its spectrum. This is accomplished in N/n-1
nearest-neighbor communication steps on the ring of N/n processing elements
that share the matrix elements. In the case of multiple instances, matrices laid out
on disjoint sets of processing elements are diagonalized concurrently, while
matrices laid out on identical sets of processing elements are diagonalized in
sequence.

A somewhat more detailed description of the parallel bisection implementation
is given in the Fall 1991 issue (Volume 1, Number 3) of the CMSSL newsletter.
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8.3.3

322

Accuracy

The input parameter folerance controls the absolute error in the eigenvalues
computation. Although the bisection algorithm is accurate enough to extract
eigenvalues to relative accuracy, only absolute accuracy is supported in this
release. The parameter tolerance should be set to the error tolerated in the com-
putation of the absolutely smallest eigenvalue. If tolerance is a non-positive
number, it is internally set to tolerance = € |[T]|, where ¢ is the machine precision
and ||[T}| is the 1-norm of the matrix. In the case of multiple instances, the internal
tolerance is the smallest tolerance over all matrices. This criterion will in general
provide high relative accuracy for the algebraically largest eigenvalues but not
for the tiny ones. In case a tiny eigenvalue is of the same order of magnitude as
the default tolerance value, consider restarting the eigenvalue computation with
a smaller (but positive) tolerance. This situation may occur because the matrices
are assumed to be unreduced (see Section 8.3.3 below). If a matrix is not unre-
duced, tiny eigenvalues that correspond to a small submatrix are computed with
a default rolerance that corresponds to the full matrix. Because the norm of the
full matrix could be much larger than the norm of the submatrix, the eigenvalues
of the submatrix are not computed as accurately as they would have been had the
original matrix been deflated beforehand.

Restriction

Prior deflation of the matrix plays an important role in the standard bisection
algorithm. The current version of sym_tridiag_eigenvalues does not perform
deflation. Input matrices are assumed unreduced. In case the square of a subdia-
gonal element is zero, it is replaced with the smallest number representable on
the machine to avoid the evaluation of 0/0 in the non-linear Sturm recurrence.
This situation could occur because there is no overflow check in the Sturm recur-
rence computation (IEEE arithmetic guarantees that the sign of an overflowed
quantity is preserved). This alteration of the matrix entries, when it occurs, con-
tributes an uncertainty of (UN)Y2, where UN is the underflow threshold, a very
tiny quantity.

Nothing prevents you from deflating the matrix beforehand and calling in
sequence sym_tridiag_eigenvalues with array sections that contain unreduced
submatrices. Resulting submatrices could be diagonalized in parallel using mul-
tiple instances with an array of higher dimensionality, but it is quite unlikely that
the submatrices will be of the same order. For the same reason, this preprocessing
step is only likely to be useful in the single-instance case.
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Eigenvalues of Real Symmetric
Tridiagonal Matrices

The sym_tridiag_eigenvalues routine computes all the eigenvalues of one or more real sym-
metric tridiagonal matrices of the same order. The diagonal and subdiagonal matrix
elements are stored in two CM vectors or arrays.

SYNTAX

sym_tridlag_eigenvalues (d, e, axis, tolerance, ier)

ARGUMENTS

d Real CM array containing the diagonal elements of one or more
symmetric tridiagonal matrices. On successful completion of
sym_tridiag_eigenvalues, the diagonal elements of each matrix are
overwritten with the sorted eigenvalues of the matrix; the
algebraically smallest eigenvalue is placed in the first element.

e Real CM array of the same shape and layout as d, containing the
off-diagonal elements of the symmetric tridiagonal matrices. The
first element in each instance can have any value. On return, each
element of e is squared and the first element is set to zero.

axis Scalar integer variable. The axis of d and e along which the
elements of each matrix lie (the non-instance axis).

tolerance Scalar real variable. Absolute error tolerance for the computed
eigenvalues. When tolerance is non-positive, it is reset internally
as described in Section 8.3.2.

ier Scalar integer variable. Set to 0 on successful completion.

DESCRIPTION

The sym_tridiag_elgenvalues routine computes Tx = Ax, where T is stored in d and e
and the eigenvalues A are returned in d.
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EXAMPLES

Sample CM Fortran code that uses the sym_tridiag_elgenvalues routine can be found
on-line in the directory

elgen/realsymtrid/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1, June 1993
324 Copyright © 1993 Thinking Machines Corporation



Chapter 8. Eigensystem Analysis

8.4 Eigenvectors of Real Symmetric Tridiagonal

e

Matrices

The sym_tridiag_eigenvectors routine computes the eigenvectors corresponding
to a given set of eigenvalues of one or more real symmetric tridiagonal matrices
of the same order.

Inverse Iteration Algorithm

Given a matrix T and A an approximate eigenvalue of 7, inverse iteration is the
inverse power method applied to (T - AI). The essential computation of inverse
iteration is the solution of linear systems of equations of the form

(T-\Dx=b (1)

The matrix (T - Al) is close to singular when A is an approximate eigenvalue.
Unlike the CM-200 version, the CM-5 implementation of inverse iteration uses
numerical pivoting in the solution of the very ill-conditioned system of equa-
tions (1).

The starting vectors for inverse iteration are independent normalized random
vectors, and at least two inverse iterations are performed. Eigenvectors corre-
sponding to clustered eigenvalues are orthogonalized using the modified
Gram-Schmidt algorithm. The segmented SCAN operation allows for ortho-
gonalization within clusters, but this is clearly an unbalanced computation.

Accuracy

The eigenvalues supplied in the f input array must be accurate enough for the
associated eigenvectors to be determined accurately by inverse iteration. This
will generally be the case when the eigenvalues are computed using sym_tri-
diag_eigenvalues with the tolerance set internally, assuming no tiny eigenvalue
is of the same order of magnitude as this default tolerance (see Section 8.3.2).

Eigenvectors corresponding to close eigenvalues are ill-conditioned. Extracting
independent and orthogonal eigenvectors corresponding to pathologically close
eigenvalues is a hard problem. In particular, eigenvectors associated with
grouped eigenvalues must be orthogonalized. This is achieved using the modi-
fied Gram-Schmidt algorithm. Eigenvalues %; and A; are grouped if [;; - & | <
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8.4.3

844
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group || TNk, where ||T]|co is the infinity norm of the matrix and group is the group-
ing criterion. The standard value for the grouping criterion is 10~ (see reference
4 in Section 8.10). It is, however, a rather subjective matter. Numerical experi-
ments show that rather large fluctuations in the grouping criterion do not
drastically influence orthogonality between eigenvectors for practical purposes
(see reference 6). They do have a drastic influence on performance, however.
Even though the default value is group = 1074, it is strongly recommended that
you experiment with much lower grouping criteria. In most practical cases, a
value of group = 103, for example, has proved satisfactory.

Applicability

Unlike sym_tridiag_eigenvalues, which computes all eigenvalues of one or more
matrices, sym_tridiag_eigenvectors can compute selected eigenvectors of one or
more matrices. As many eigenvectors are computed as there are eigenvalues in
the f array. Therefore, the f and Q arrays must have the same shape, except for
the extra dimension of Q that will hold the eigenvectors. The extra axis of Q
(identified by the eigenvector_axis argument) must have a length equal to the
order of the matrices represented by d and e. Selected eigenvalues for which the
eigenvectors are sought can be supplied in an array subsection. However, f must
have the same rank as d (or e). (For detailed descriptions of all arguments, see
the man page at the end of this section.)

To illustrate the above, let A(100) and B(100) be one-dimensional arrays contain-
ing the diagonal and subdiagonal elements of a tridiagonal matrix of order 100.
Let D(100) be the array containing all its eigenvalues as returned by sym_ tri-
diag_eligenvalues. Assume only the eigenvectors corresponding to the 10 largest
eigenvalues are sought. One can allocate an array Z(100, 10) to store the 10
eigenvectors. In this case, a proper call to sym_tridiag_eigenvectors would be

sym_tridiag_eigenvectors(A, B, 1, D(91:100), Z, 1, group, ier)

Restriction

Prior deflation of the matrix plays an important role in the standard inverse itera-
tion algorithm (see reference 4 in Section 8.10). The original matrix is the direct
sum of submatrices when negligible subdiagonal elements occur (see Section
8.3.3). The input eigenvalues have an index pointing to the submatrix to which
they belong, and the subproblems are processed in sequence. Eigenvectors
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8.4.5

belonging to different submatrices are exactly orthogonal since they span ortho-
gonal vector spaces. The current version of sym_tridiag_eigenvectors does not
perform deflation. Input matrices are assumed unreduced. As a result, eigenvec-
tors associated with close eigenvalues that belong to different submatrices will
be orthogonalized numerically, a less accurate solution to the problem of finding
orthogonal vectors which belong to naturally orthogonal spaces.

As with sym_tridiag_eigenvalues, nothing prevents you from deflating the matrix
beforehand and solving the subproblems in sequence using array subsections. In
such a case, the submatrices will most likely be determined before calling
sym_tridiag_elgenvalues, and the eigenvalues belonging to different submatrices
will have been extracted independently (in particular, eigenvalues will be sorted
within submatrices and not across the original matrix). Calling sym_tridlag_
eigenvectors in sequence to solve the independent subproblems with appropri-
ately shaped subsections of the eigenvector array will then yield exactly
orthogonal eigenvectors associated with orthogonal subspaces. As with sym_
tridiag_eigenvalues, this will not in general lead to subproblems of the same size
that could be solved concurrently in a multiple-instances fashion.

Performance

Since the tridiagonal system solver routines gen_tridiag_factor and gen_tridiag_
solve are called during the execution of sym_tridiag_eigenvectors, prescriptions
given for those functions in order to obtain good performance apply here as well.
In particular, lay out the eigenvectors on a serial dimension for best performance.
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Eigenvectors of Real Symmetric
Tridiagonal Matrices

The sym_tridiag_eigenvectors routine determines the eigenvectors corresponding to a set
of eigenvalues of one or more real symmetric tridiagonal matrices of the same order. The
diagonal and subdiagonal matrix elements and the eigenvalues are stored in CM vectors or
arrays. The eigenvectors are stored in a multidimensional CM array.

SYNTAX

sym_tridiag_eigenvectors (d, e, axis, f, Q, eigenvector_axis, group, ier)

ARGUMENTS

328

d

Real CM array containing the diagonal elements of one or
more symmetric tridiagonal matrices. The axis along which
the elements of each matrix lie (the non-instance axis) is
identified by the axis argument.

Real CM array of the same shape and layout as d. Contains the
off-diagonal elements of the symmetric tridiagonal matrices.
The axis along which the elements of each matrix lie (the
non-instance axis) is identified by the axis argument. The first
element in each instance is arbitrary and is set to zero on
return. ’

Scalar integer variable. The non-instance axis of d and e (the
axis along which the matrix elements lie).

CM array containing the eigenvalues for which the
eigenvectors are sought. Must have the same rank as d. The
instance axes must match those of 4 in order of declaration
and extents. Within each instance, the eigenvalues belonging
to the same spectrum must be sorted in non-decreasing order
(with the algebraically smallest eigenvalue stored in the first
array element). The extent of the axis identified by axis can be
smaller in f than it is in d, as described in Section 8.4.3.
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eigenvector_axis

group

ier

DESCRIPTION

Chapter 8. Eigensystem Analysis

Eigenvectors (Real Symmetric Tridiagonal Matrices)

CM array that contains the eigenvectors on return. Must have
rank one greater than that of f. You must specify the index of
the extra dimension in the eigenvector_axis argument. The
array section obtained by collapsing this extra dimension
must be of the same shape as f (see Section 8.4.3). Thus, for
each eigenvalue in f, there is an associated vector lying along
axis eigenvector_axis of Q. Upon completion, this vector
contains the eigenvector corresponding to the eigenvalue.

Scalar integer variable. The axis of Q along which the
returned eigenvectors lie. The extent of axis eigenvector_axis
is the order of the tridiagonal matrices.

Scalar real variable. Eigenvalues that differ by less than
group||T)| (where ||| is the infinity norm of the matrix) are
grouped together and their corresponding eigenvectors are

orthogonalized. When group is non-positive, it is reset
internally as described in Section 8.4.2.

Scalar integer variable. Set to 0 on successful completion. On
error, contains one of the following codes:

1 The rank of f is not the same as the rank of d.
2 The rank of Q is not the equal to (rank of d) + 1.

3 The shape of the array section corresponding to
a fixed index of Q along dimension eigenvec-
tor_axis does not have the same shape as f.

1000+n n eigenvectors are not determined after 5 inverse
iterations. The non-converged eigenvectors are
set to 0 on return.

Given one or more symmetric tridiagonal matrices represented by the CM arrays d and
e, and a CM array f containing a set of eigenvalues for each matrix, the sym_tridiag_
eigenvectors routine computes the eigenvector corresponding to each eigenvalue —

that is, it computes

TQ = Q * DIAG()
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where T is stored in d and e. Upon return, the eigenvectors are contained in the CM
array Q.

EXAMPLES

Sample CM Fortran code that uses the sym_tridiag_eigenvectors routine can be found
on-line in the subdirectory

eigen/realsymtrid/cmf/

of a CMSSL examples directory whose location is site-specific.
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8.5 Eigensystem Analysis of Dense Hermitian Matrices

8.5.1

The sym_tred_elgensystem routine combines the functionality of the following
routines:

" sym_tred

*  sym_tridiag_eigenvalues

®= sym_tridiag_eigenvectors

* tridiag_to_sym

"  deallocate_sym_tred

Given a CM atray containing one or more Hermitian matrices, sym_tred_ eigen-
system computes the eigenvalues and, if desired, the eigenvectors of each matrix.

The sym_tred_elgensystem routine offers a convenient packaging of the five rou-
tines listed above. On the other hand, the sym_tridiag_eigenvectors routine
allows you the flexibility of computing only selected eigenvectors of each
matrix, whereas sym_tred_elgensystem computes either all or none of the eigen-
vectors.

For a detailed description of sym_tred_eigensystem, see the man page at the end
of this section.

Accuracy

The tolerance parameter controls the accuracy of the eigenvalues after reduction
to tridiagonal form (see Section 8.3.2). Note that requesting extra accuracy for
the eigenvalues of the intermediate tridiagonal matrix improves the quality of the
eigenvalues of the original matrix only to the extent that roundoff errors incurred
in the reduction to tridiagonal form do not dominate. The group parameter sets
the grouping criterion for the eigenvalues after reduction to tridiagonal form (see
Section 8.4.2).
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Eigensystem Analysis of
Dense Hermitian Matrices

Given a CM array containing one or more complex Hermitian matrices, sym_tred_ eigen-
system computes the eigenvalues and, if desired, the eigenvectors of each matrix.

SYNTAX

sym_tred_elgensystem (d, Q, A, n, row_axis, col_axis, nblock, evects_flag, tolerance,

group, ier)

ARGUMENTS

332

d

Real CM array with the same rank as A. Axis row_axis must
have extent 1; axis col_axis must have extent > n. The
remaining axes are instance axes matching those of A in order
of declaration and extents. Thus, each vector within d
corresponds to a matrix A within A. Upon completion of
sym_tred_eigensystem, elements 1 through n of each vector in
d contain the eigenvalues of the corresponding matrix A,
sorted in non-decreasing order (with the algebraically
smallest eigenvalue stored in the first element).

CM array with the same rank and data type as A. The axes
identified by row_axis and col_axis must have extents > n; the
remaining axes are instance axes that must match those of A
in order of declaration and extents. Thus, for each matrix A
within A there is a corresponding two-dimensional array of
dimensions at least n X n within Q. If evects_flag is set to 1,
then upon return, the eigenvectors of each A within A are
placed in the upper-left-hand n X n elements of the
corresponding two-dimensional array within Q. The
eigenvectors lie along the axis identified by col_axis. The
eigenvectors are sorted so that they are returned in the same
order as the eigenvalues to which they correspond.
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row_axis

col_axis

nblock

evects_flag

tolerance

group

ier
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Real or complex CM array containing one or more Hermitian
matrices, A. Each A within A is assumed to be dense and
square with dimensions n X n. The axes identified by row_axis
and col_axis must have extent n.

Upon return, each A within A is overwritten with information
about the Householder transformations used to reduce A to a
real symmetric tridiagonal matrix.

Scalar integer variable. The number of rows and columns in
each Hermitian matrix A within A.

Scalar integer variable. The axis of A that counts the rows of
each Hermitian matrix A.

Scalar integer variable. The axis of A that counts the columns
of each Hermitian matrix A.

Scalar integer variable. Blocking factor. For typical
applications, nblock = 2 is a good choice. For very large

- matrices, nblock = 4 or even 8 may yield faster reduction. The

amount of auxiliary storage used is proportional to nblock, so
if memory is tight a smaller nblock may be a better choice.

Scalar integer variable. If you set evects_flag to 0, only the
eigenvalues are computed. If you set evects_flag to 1, both
eigenvalues and eigenvectors are computed.

Scalar real variable. Controls the absolute accuracy of the
eigenvalues after reduction to tridiagonal form. When
tolerance is non-positive, it is reset internally as described in
Section 8.3.2.

Scalar real variable. Grouping criterion for eigenvalues after
reduction to tridiagonal form. Corresponding eigenvectors are
orthogonalized. When group is non-positive, it is reset
internally as described in Section 8.4.2.

Scalar integer variable. Return code; set to 0 upon successful
return. The following codes indicate errors:

-1 Length of axis row_axis of A is < n; must be
zn.
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DESCRIPTION

Length of axis col_axis of A is < n; must be
2n.

Rank of A is < 2; must be > 2.
Data type of A is not real or complex.

row_axis or col_axis is invalid. 1 < row_axis,
col_axis < rank(A) must be true, and
row_axis and col_axis must not be equal.

nblock is invalid; must be > 1.

The rank of d is not the same as the rank of
A.

The rank of Q is not the equal to the rank of
A.

The axes of Q other than axes row_axis and
col_axis do not match the instance axes of A
in order of declaration and extents.

n eigenvectors are not determined after 5
inverse iterations. The non-converged eigen-
vectors are set to O on return.

Given a CM array, A, containing one or more Hermitian matrices, sym_tred_ eigensys-
tem computes the eigenvalues of each matrix. If evects_flag is set to 1, then
sym_tred_elgensystem also computes the eigenvector associated with each eigenvalue

— that is, it computes
AQ = Q * DIAG(d).

EXAMPLES

Sample CM Fortran code that uses the sym_tridiag_eigensystem routine can be found

on-line in the subdirectory

334
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elgen/tred/cmf/

of a CMSSL examples directory whose location is site-specific.
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8.6 Generalized Eigensystem Analysis

of Real Symmetric Matrices

Given a CM array A containing one or more real symmetric matrices A, and a CM
array B containing corresponding positive definite matrices B, the sym_tred_
gen_elgensystem routine solves

AQ = BQA,

computing the eigenvalues A and, if desired, the eigenvectors for each instance.
In the case where B is the identity matrix, sym_tred_gen_eigensystem performs
the same operation as sym_tred_eigensystem.

Like sym_tred_eigensystem, sym_tred_gen_eligensystem offers a convenient
packaging of a series of component operations. Calling sym_tred_gen_
eigensystem to solve AQ = BQA is equivalent to performing the following opera-
tions:

1. Use sym_tred_eigensystem to solve for the eigenvalues and eigenvectors
of B. Let A denote the diagonal matrix of eigenvalues of B, and Qp denote
the matrix of eigenvectors of B.

2. Use gen_matrix_mult to compute the matrix B-12 = Qg (Ag)~1/2 QpT.
3. Use gen_matrix_mult to compute the symmetric matrix A* = B-1/2 4 B-112,

4. Use sym_tred_eigensystem to compute the eigenvalues and eigenvectors
of A*, or call the components of sym_tred_eigensystem scparately (see
Section 8.5) if you want to compute only selected eigenvectors. The eigen-
values of A" are the same as the eigenvalues of A. Let Qq» denote the
matrix of eigenvectors of A*.

5. Use gen_matrix_mult to compute the eigenvectors of A, Qq = B-12Q,+.
Note that step 2 requires B to be positive definite.

Calling the component routines separately as described above is useful if you
want to compute only selected eigenvectors of each matrix. In its current imple-
mentation, sym_tred_gen_elgensystem computes either none or all of the
eigenvectors.

For a detailed description of sym_tred_gen_eigensystem, see the man page at the
end of this section.
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8.6.1 Accuracy

Like sym_tred_eigensystem, which is described in Section 8.5, sym_tred_gen_
eigensystem first reduces each symmetric matrix A to tridiagonal form. The tol-
erance argument controls the accuracy of the eigenvalues after reduction to
tridiagonal form, as described in the section on sym_tridiag_eigenvalues (Section
8.3). Note that requesting extra accuracy for the eigenvalues of the intermediate
tridiagonal matrix improves the quality of the eigenvalues of the original matrix
only to the extent that roundoff errors incurred in the reduction to tridiagonal
form do not dominate.

The group parameter sets the grouping criterion for the eigenvalues after reduc-
tion to tridiagonal form, as described in the section on sym_tridiag_eigenvectors
(Section 8.4).
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Generalized Eigensystem Analysis of
Real Symmetric Matrices

Given a CM array A containing one or more real symmetric matrices A, and a CM array
B containing corresponding positive definite matrices B, sym_tred_gen_eigensystem
solves AQ=BQA, computing the eigenvalues A and, if desired, the eigenvectors for each
instance.

SYNTAX

sym_tred_gen_elgensystem (d, Q, B, A, n, row_axis, col_axis, nblock, evects_flag,
tolerance, group, ier)

ARGUMENTS

d Real CM array with the same rank and precision as A. Axis
row_axis must have extent 1; axis col_axis must have extent > n.
The remaining axes are instance axes matching those of A in order
of declaration and extents. Thus, each vector within d corresponds
to a matrix A within A. Upon completion of sym_tred_gen_
elgensystem, elements 1 through » of each vector in d contain the
eigenvalues of the corresponding matrix in A, sorted in
non-decreasing order (with the algebraically smallest eigenvalue
stored in the first element).

Q Real CM array with the same rank and precision as A. The axes
identified by row_axis and col_axis must have extents > n; the
remaining axes are instance axes that must match those of A in
order of declaration and extents. Thus, for each matrix A within A
there is a corresponding two-dimensional array of dimensions at
least n X n within Q. If evects_flag is set to 1, then upon return, the
eigenvectors of each matrix within A are placed in the
upper-left-hand n X n elements of the corresponding
two-dimensional array within Q. The eigenvectors lie along axis
col_axis, and are sorted so that they are returned in the same order
as the eigenvalues to which they correspond.
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row_axis

A col_axis

nblock

evects_flag

tolerance

group
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Real CM array of the same rank, shape, and precision as A. For
each symmetric matrix A within A, B contains a corresponding
positive definite matrix B, with rows and columns defined by axes
row_axis and col_axis, respectively. Upon return, each matrix B
within B is overwritten.

Real CM array of rank > 2 containing one or more dense, square,
symmetric matrices A, with rows and columns counted by axes
row_axis and col_axis, respectively. Axes row_axis and col_axis
must have extent n. Upon return, each matrix A within A is
overwritten with information about the Householder
transformations used to reduce the matrix to symmetric
tridiagonal form.

Scalar integer variable. The number of rows and columns in each
symmetric matrix A within A.

Scalar integer variable. The axis of A that counts the rows of each
symmetric matrix A.

Scalar integer variable. The axis of A that counts the columns of
each symmetric matrix A.

Scalar integer variable. Blocking factor. For typical applications,
nblock = 2 is a good choice. For very large matrices, nblock = 4 or
even 8 may yield faster reduction. The amount of auxiliary
storage used is proportional to nblock, so if memory is tight a
smaller nblock may be a better choice.

Scalar integer variable. If you set evects_flag to 0, only the
eigenvalues are computed. If you set evects_flag to 1, both
eigenvalues and eigenvectors are computed.

Scalar real variable. Controls the absolute accuracy of the
eigenvalues after reduction to tridiagonal form. When tolerance is
non-positive, it is reset internally as described in the section on
sym_tridiag_eigenvalues.

Scalar real variable. Grouping criterion for eigenvalues after
reduction to tridiagonal form. Corresponding eigenvectors are
orthogonalized. When group is non-positive, it is reset internally
as described in the section on sym_tridiag_eigenvectors.
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ier Scalar integer variable. Return code; set to 0 upon successful
return. The error codes are the same as for sym_tred_elgensystem,
with one addition:
-10 One or more matrices within B are not posi-
tive definite.
DESCRIPTION

Given a CM array A containing one or more real symmetric matrices A, and a CM array
B containing corresponding positive definite matrices B, sym_tred_gen_eigensystem
solves AQ=BQA, computing the eigenvalues A. If evects_flag is set to 1, the routine
also computes the eigenvectors for each instance — that is, it computes

AQ = BQ * DIAG(d).

EXAMPLES

Sample CM Fortran code that uses the sym_tred_gen_elgensystem routine can be
found on-line in the subdirectory

elgen/general/cmf/

of a CMSSL examples directory whose location is site-specific.
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8.7 Eigensystem Analysis of Real Symmetric Matrices

8.7.1

Using Jacobi Rotations

The sym_jacobi_eigensystem routine computes the eigenvalues and eigenvectors
of one or more dense real symmetric matrices using the Jacobi method.

In the Jacobi method, iterative sweeps are made through each supplied matrix.
In each sweep, successive rotations are applied to the matrix to zero out each
off-diagonal element. A sweep consists of the application of n(n-1)/2 rotations,
where n is the order of the matrix. As each new element is zeroed out, the ele-
ments previously zeroed generally become non-zero again. However, with each
sweep, the square root of the sum of the squares of the off-diagonal elements, ¢
= (Z[off-diagonal]?)!/2, decreases. With successive sweeps, the off-diagonal ele-
ments approach 0, the matrix approaches a diagonal matrix, and the diagonal
elements approach the eigenvalues. Eigenvectors are obtained by applying the
Jacobi rotations to the basis of unit vectors.

For a detailed description of sym_jacobi_eigensystem, refer to the man page at
the end of this section.

Accuracy

The accuracy of the Jacobi method can be described as follows. Provided the
convergence criterion is met on return (see the description of the tolerance argu-
ment in the man page), the absolute error in the computed eigenvalues is

IAlle * max(p(n) * machine_epsilon, tolerance)

where [JA||r is the Frobenius norm of A, defined as ||A|lp = [£4;%]'/2, and in prac-
tice p(n)=0(n).
The errors in the computed eigenvectors (measured as the angles between the
computed eigenvectors and the true eigenvectors) are bounded as follows:
[l4}lg * max(p(n) * machine_epsilon, tolerance)

gap(i)

angle_error(i) <

where gap(i) is the absolute difference between eigenvalue(i) and the next near-
est eigenvalue.

Version 3.1, June 1993
Copyright © 1993 Thinking Machines Corporation 341



Eigensystem Analysis Using Jacobi Rotations CMSSL for CM Fortran (CM-5 Edition)

Eigensystem Analysis of Real Symmetric
Matrices Using Jacobi Rotations

Given a real CM array containing one or more dense symmetric matrices, the sym_
jacobi_eigensystem routine computes the eigenvalues and eigenvectors of each matrix.

SYNTAX

sym_jacobi_eigensystem (A, axis_1, axis_2, nsweeps, tolerance, d, Q, evects_flag,

ier)

ARGUMENTS
A

axis_1

axis_2

nsweeps

tolerance

342

Real CM array of rank greater than or equal to 2, containing one
or more dense symmetric matrices A whose eigenvalues you want
to compute. The declared extents of axes axis_I and axis_2 define
the dimensions of the matrices 4, and must be equal. The values
of A may be modified by sym_jacobi_eigensystem.

Scalar integer variable. Identifies one of the two axes of A that
count the rows and columns of the embedded matrices A.

Scalar integer variable. If axis_I identifies the axis of A that
counts the rows of the embedded matrices A, then axis_2 must
identify the axis that counts the matrices’ columns; or vice versa.

Scalar integer variable. On input, specifies the maximum number
of sweeps to be performed for any supplied matrix. Typical input
values lie in the range from 10 to 20. On return, contains the
maximum number of sweeps actually performed across all the
matrix instances.

Scalar real variable. Convergence criterion. Must have the same
precision as A, and must be > 0. When, for any matrix instance
A = (@), the value of||Allr decreases below the input value of
tolerance, the routine stops processing that instance. In this
context, o is the square root of the sum of the squares of the
off-diagonal elements, ¢ = (Z[off-diagonal]2)!/2, |lA||p is the
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Frobenius norm of A, defined as [ 4|lr = [£4;%]/2. Upon return,
tolerance contains the largest current value of of||A|lp occurring
across all matrix instances A.

d Real CM array with the same rank as A. Must have the same axis
extents as A, except that either axis_I or axis_2 must have extent
1. (You may have different layout directives for d and A.) Thus,
each matrix A embedded in A corresponds to a vector embedded
in d; upon return, the eigenvalues of a matrix A in A are placed in
the corresponding vector in d, with the smallest eigenvalue in the
first element of the vector.

Q If you set evects_flag to 0, you can supply the scalar value O for
Q. If you set evects_flag to 1, Q must be a real CM array with the
same rank and axis extents as A. (It may have different layout
directives than A and d.) Upon return, the eigenvectors for each
matrix A within A are placed in the columns of the corresponding
matrix within Q. The eigenvectors are sorted to correspond to the
order of the eigenvalues returned in d. Thus, the eigenvector
corresponding to the ith eigenvalue of a matrix in d is returned in
column i of the corresponding matrix in Q.

evects_flag Scalar integer variable. Indicates whether eigenvectors are to be
computed. If you set evects_flag to 0, sym_jacobl_eigensystem
computes only the eigenvalues; if you set evects_flag to 1, both
eigenvalues and eigenvectors are computed.

ier Scalar integer variable. Error code. Set to O upon successful
return, or to one of the following codes:

-1 A, d, or Q is not of type real.
-2 A, d, and Q do not all have the same rank, or have

rank < 2.

-4 axis_l or axis_2 is < 1 or > rank(A), or axis_I =
axis_2.

-8 The extents of axes axis_I and axis_2 are not
equal (that is, the supplied matrix or matrices are
not square).

-16  d does not conform to the requirements listed
above.
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-32  Q does not conform to the requirements listed
above.

DESCRIPTION

Given a real CM array A containing one or more dense symmetric matrices 4, the sym_
Jacobl_eigensystem routine computes the eigenvalues and eigenvectors of each matrix
and returns them in the CM arrays d and Q, respectively — that is, it computes

AQ = Q * DIAG(d).

In the Jacobi method, iterative sweeps are made through each supplied matrix. In each
sweep, successive rotations are applied to the matrix to zero out each off-diagonal ele-
ment. A sweep consists of the application of n(n-1)/2 rotations, where n is the order of
the matrix. As each new element is zeroed out, the elements previously zeroed gener-
ally become non-zero again. However, with each sweep, the square root of the sum of
the squares of the off-diagonal elements, o = (Z[off-diagonal]?)!/2, decreases. With
successive sweeps, the off-diagonal elements approach 0, the matrix approaches a
diagonal matrix, and the diagonal elements approach the eigenvalues. Eigenvectors are
obtained by applying the Jacobi rotations to the basis of unit vectors.

The sym_jacobl_elgensystem routine stops processing each matrix instance 4 = (;;) as
soon as one of the following conditions is met for that instance:

®  The routine has made nsweeps sweeps.

=  The value o/||A|lr has fallen below the input value of tolerance. (||A|lr is the
Frobenius norm of A, defined as ||A|lr = [Z4;;%1/2.)

Upon return, sym_jacobi_eigensystem provides the eigenvalues and eigenvectors in
the CM arrays d and Q, as follows:

® The sorted eigenvalues of a matrix 4 in A are placed in the corresponding vec-
tor in d, with the smallest eigenvalue in the first element of the vector.

® The eigenvectors for each matrix A within A are placed in the columns of the
corresponding matrix within Q. The eigenvectors are sorted to correspond to
the order of the eigenvalues returned in d. Thus, the eigenvector corresponding
to the ith eigenvalue of a matrix in 4 is returned in column i of the correspond-
ing matrix in Q.
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NOTES

Argument Values Modified. Since the values of A, nsweeps, and tolerance may be
modified upon return, be sure to reset these arguments to the desired values if you call
sym_jacobi_eigensystem in a loop. '

EXAMPLES

Sample CM Fortran code that uses the sym_jacobi_eigensystem routine can be found
on-line in the subdirectory

elgen/jacobl/cmf/

of a CMSSL examples directory whose location is site-specific.
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8.8 Selected Eigenvalue and Eigenvector Analysis

8.8.1

346

Using a k-Step Lanczos Method

The sym_lanczos routine finds selected solutions {A, x} to the real standard or
generalized eigenvalue problem

Lx = ABx.

B can be positive semi-definite and is the identity for the standard eigenproblem.
The operator L must be real and symmetric with respect to B:

BL = L'B

The algorithm used is a k-step Lanczos algorithm with implicit restart (see refer-
ence 12 in Section 8.10). The sym_janczos routine uses a reverse communication
interface. You must call sym_lanczos iteratively; sym_lanczos returns control to
the calling program whenever it requires the action of the operator L or Bon a
vector. You must supply the routines that perform these actions.

For a detailed description of sym_lanczos and its associated setup and dealloca-
tion routines, sym_lanczos_setup and deallocate_sym_lanczos_setup, refer to the
man page following this section.

The k-Step Lanczos Algorithm

The k-step Lanczos algorithm with implicit restart is described in full detail in
reference 12. The k-step Lanczos algorithm first performs k steps of the Lanczos
factorization of L,

LVB = PBT® + BT 0

where V = [vy, v, ..., %] has columns orthonormal with respect to B, T'is a tridia-
gonal matrix of order k, and r®eT is called the residual vector. The starting
Lanczos vector v; is generated internally if you set the argument info to 0 on
input; otherwise you must supply it. The goal is to update the original Lanczos
factorization of size k (1) in order to drive the residual vector iteratively to zero.
This is achieved by forcing the startiag vector v; into a subspace spanned by the
eigenvectors corresponding to the k desired eigenvalues. This purification of the
starting vector is accomplished by filtering out the components corresponding to
eigenvalues not in the desired portion of the spectrum. To this aim, the sequence
(1) is advanced nv - k steps further. The Rayleigh-Ritz procedure applied to the
Lanczos subspace of dimension nv yields approximations to k desired eigenva-
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8.8.2

lues, but also approximations to nv - k unwanted eigenvalues. The filtering
process is done implicitly through QR factorizations of T using those
“unwanted” nv - k Ritz values as shifts. The Lanczos vectors and the residual
are updated accordingly to yield an updated Lanczos k-step factorization of the
same form as (1). The updated Lanczos factorization is then advanced again nv
- k steps, and implicit filtering performed. Call this sequence of operations a
Lanczos update iteration. The k-step method iterates until k Ritz values approxi-
mate the k desired eigenvalues to prescribed accuracy. Error bound bounds(i)
associated with Ritz value ritz(i) is given by the product of the norm of the cur-
rent residual and the last component of the eigenvector corresponding to ritz().
The convergence criterion for the Ritz value ritz(i) is bounds(i) < tol | ritz(i) |,
i =1, ..., k, where ol is an input tolerance argument that defaults to machine
precision.

Input Arguments and Data Structures

The argument k is usually set to the desired number of eigenvalues. The total size
of the Lanczos subspace, nv, must be at least k or 2k, depending on whether the
eigenvectors are sought, but has no upper bound other than the size of the eigen-
problem (or the memory available in the machine). It is generally recommended
that nv = 2k even if eigenvectors are not requested. Taking nv > 2k may enhance
convergence, but this is problem-dependent. The cost of an implicit restart itera-
tion is roughly 2n * m? flops.

The nv columns of the matrix V (the Lanczos vectors) are stored as rows in the
CM array vec(1:nv,...). The subdiagonal of the tridiagonal matrix T is stored in
the array work starting at location ipntr(5)+1, while the diagonal is stored in work
starting at location ipntr(5)+nv. The current residual vector is stored in the CM
array resid. Internally generated exact shifts (i.e., “unwanted” Ritz values) are
used when iparam(1) = 1. This is the recommended option. However, it is also
possible to supply nv - k external shift values by setting iparam(1) = 0. It may
be advantageous to supply the roots of a specially constructed filter polynomial
(e.g., Tchebyschev polynomials) when a priori knowledge about the spectrum is
available. Polynomials of degree higher than nv - k may be applied in a cyclic
fashion, supplying nv - k roots at a time.

The maximum number of Lanczos update iterations is specified in iparam(3).
The Ritz values are found in the array ritz stored in work at location ipntr(6).
Residual bounds are in the array bounds stored in work starting at location
ipntr(7). After the final iteration, the first k values in ritz contain the desired
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8.8.3

8.84

348

eigenvalues, and the & vectors stored in vec(k+1:2k,...) are the corresponding
eigenvectors.

Multiple Eigenvalues

You can extract multiple eigenvalues with sym_lanczos, provided the argument
tol is set to a very small value (close to machine precision). This is possible even
though there is no blocking in the current version of sym_lanczos and iparam(4),
the block size for the Lanczos recurrence, is set to 1. The online example illus-
trates the extraction of multiple eigenvalues of the discretized Laplace operator
in three dimensions.

Convergence Properties and Spectral Transformations

The argument which allows you to specify the location of the desired eigenvalues
to some extent. You can compute either largest (algebraically or abolutely) or
smallest (algebraically or absolutely) eigenvalues, or half the eigenvalues from
each end of the spectrum. In general, eigenvalues located at both ends of the
spectrum emerge first in the Lanczos process. Their convergence rate is propor-
tional to their relative separation, that is, their absolute separation divided by the
spread of the spectrum (the total extent of the spectrum on the real axis). Abso-
lutely large eigenvalues always converge rapidly, unless they are tightly
clustered. On the other hand, absolutely small eigenvalues are usually much
slower to converge, either because they are not at either end of the spectrum or
because due to a large spread, their relative separation will be small. This will
be true even when they are well separated in an absolute sense.

To accelerate convergence of absolutely small eigenvalues in the standard eigen-
problem Ax = Ax, it is profitable to operate with the inverse operator L = A-!
instead of A, since tiny eigenvalues of A are the absolutely largest eigenvalues
of L. More generally (see reference 13), if eigenvalues of A around o are desired,
it is profitable to operate with L =(4 - oI)~! instead of A, since eigenvalues of
A close to o are mapped into absolutely largest eigenvalues of L. For the general-
ized eigenvalue problem Ax = ABx, the transformed operator is chosen to be L
= (A - oB)"1B. Although L is not symmetric, it is symmetric with respect to B.
This formulation has the advantage of leaving the eigenvectors unchanged (see
references 14 and 15). Other transformations can be used — for example, the
Cayley transform, L = (A - oB)"1(A + o¢B). Of course, eigenvalue approxima-
tions returned by sym_lanczos must be transformed appropriately to give
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approximations to (generalized) eigenvalues of the original operator when any
of these transformations are used.

Using transformed operators as described above entails solving linear systems of
equations, as well as choosing the shift(s) o. These operations (as all matrix-vec-
tor operations) are left to the user through a reverse communication interface
described below. Typical spectral transformations are listed in Table 5. (The
“type” values in the table are the values you must specify in the fype argument
on input.) Examples showing how to use the reverse communication interface in
these cases are provided below.

Table 5. Examples of eigenproblems and spectral transformations.

M must be positive semi-definite.
Proper use of the reverse communication interface for these cases is
described below.

Eigenproblem Type Mode L B
Ax = \x I Regular A I
Ax = Ax I Shift-invert (A - ol)”! I
Kx = AMx G  Shiftinvert (K - oM)"IM M
Kx = AMx G  Cayley transf. (K- oM)"(K+ oM) M

8.8.5 Reverse Communication Interface

The aim of the reverse communication interface is to isolate the matrix-vector
operations from the k-step Lanczos code. Such operations are performed by rou-
tines you supply, on data structures which are the most natural to the problem at
hand. To this end, you must call sym_lanczos iteratively. It returns control to the
calling routine whenever the action of operators L or B on vectors is required.
The reverse communication flag, ido, which must be 0 on input to the first call
to sym_lanczos, dictates which operator is to be applied. The source and destina-
tion vectors are the arrays src and dst, respectively. An extra source array, srcl,
is needed in some cases.

For standard eigenvalue problems, there is no distinction between ido = 1 and ido
= -1. In both cases, the operation y = Lx is required, where x and y are the source
and destination vectors, respectively. For the generalized eigenvalue problem,
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the operation y = Lx is always done in two steps, since L is a product of operators.
The only difference between ido = 1 and ido = -1 is that when ido = 1, the prod-
uct Bx is already available in the array srcl and need not be computed, whereas
it must be computed explicitly when ido = -1. The value ido = -1 is returned by
sym_lanczos at the first iteration to force the starting vector into the range of L
(see reference 14). For generalized eigenproblems, sym_lanczos also returns the
value ido = 2, calling for the operation y = Bx to be executed.

We now give examples of reverse communication interfaces for the problems
listed in Table 5. We assume the vectors are represented as one-dimensional
arrays:
real resid(n),w(3,n),vec(nv,n),temp_array(),
& src(n), srcil(n), dst(n)
CMF$LAYOUT resid(),w(:serial,),vec(:serial,),temp_array ()
CMFS$SLAYOUT src(), srcil(), dst()

and the setup is called successfully:

call sym_lanczos_setup(resid,vec,w,nv,setup,ier)

Case 1

Suppose we want to solve the standard eigenvalue problem Ax = Ax in regular
mode. Then L = A and B = I. Assume that a call to matvecA(4,x,y) computes y
= Ax. The reverse communication would occur as follows:

ido=0
10 continue
call sym_lanczos(ido, 'I‘, which, k, tol, resid,
& nv, vec, iparam, src, srcl, dst,
& ipntr, w, work, lwork, info, setup)

if (ido .eq. -1 .or. ido .eqg. 1) then
call matvecA (A, src, dst)

else
stop

end if

go to 10
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Case 2

Assume now we want to solve Ax = Ax in shift-invert mode. Then L = (4-¢l)-!
and B = I. Assume that a call to solve(4,sigma,x,y) solves (A-ol)x = y. Reverse
communication would occur as follows:

ide = 0

10 continue
call sym_lanczos (ido, ‘I’, which, k, tol, resid,
& nv, vec, iparam, src, srcl, dst,
& ipntr, w, work, lwork, info, setup)

if (ido .eq. -1 .or. ido .eq. 1) then
call solve (A, sigma, src, dst)
else
stop
end if
go to 10

Case 3

Suppose now we want to solve Ax = AMx in shift-invert mode. Then L = (A-
oM)~1M and B = M. Assume that a call to matvecM(M,x,y) computes y = Mx and
a call to solve(A, M,sigma,x,y) solves (A-ocM)x =y, We would have in this case

ido = 0

10 continue
call sym_lanczos (ido, ’'G’, which, k, tol, resid,
& nv, vec, iparam, src, srcl, dst,
& ipntr, w, work, lwork, info, setup)

if (ido .eq. =-1) then
call matvecM (M, src,.-temp_array)
call solve (A, M, sigma, dst, temp_array)
else if (ido .eqg. 1) then
call solve (A, M, sigma, dst, srcl)
else if (ido .eq. 2) then
call matvecM (M, src, dst)
else
stop
end if
go to 10
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Case 4

Finally, suppose we want to solve Ax = AMx in Cayley mode. Then L = (4 -
oM)-1(A + cM) and B = M. Assume that a call to matvecM(M,x,y) computes y =
Moz, a call to matvecA(4,x,y) computes y = Ax, and a call to solve(4, M,sigma,x,y)
solves (A - oM)x = y. Reverse communication for this case would be as follows:

ido = 0

10 continue
call sym lanczos (ido, ’'G’, which, k, tol, resid,
& nv, vec, iparam, src, srcl, dst,
& ipntr, w, work, lwork, info, setup)

if (ido .eq. -1) then
call matvecM (M, src, dst)
call matvecA (A, src, temp_array)
temp_array=temp_array+sigma*dst)
call solve (A, M, sigma, dst, temp_array)
else if (ido .eq. 1) then
call matvecA (A, src, dst)
dst=dst+sigma*srcil
srcl=dst
call solve (A, M, sigma, dst, srcl)
else if (ido .eq. 2) then
call matvecM (M, src, dst)
else
stop
end if
go to 10

8.8.6 Data Layout Requirement

The CM arrays resid, src, srcl, dst, vec, and w must adhere to several constraints
with regard to shape and layout. Arrays resid, src, srcl, and dst each contain a
vector, while vec and w are collections of vectors. You may represent each vector
with an array of arbitrary dimension, in the manner that is the most natural with
respect to the matrix-vector operations. The product of the axis extents of the
arrays representing the vectors must be equal to the size of the eigenproblem.
Arrays resid, src, srcl, and dst must have the same shape and layout. Further-
more, vec and w must each have an extra (instance) axis, which must be the first
axis and must have extent at least nv in vec and at least 3 in w. This axis must
be made local to a processing element so that the vectors, which have identical
shape and layout, are “stacked up” in memory. This is accomplished by declaring
the instance axis :serial in the calling program using a CMF$LAYOUT directive.
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8.8.7

For example, in the one-dimensional case where the size of the eigenproblem is
n, array declarations would be as follows:

real vec(nv,n),w(3,n),resid(n),src(n),srcl(n),dst(n)
CMFSLAYOUT vec(:serial,),w(:serial,),resid()
CMF$LAYOUT src(),srcl(),dst()

In the two-dimensional case where the size of the problem is nl * n2 = n, the
array declarations would be

real vec(nv,ni,n2),w(3,nl,n2),resid(nl,n2)

real src(nl,n2),srcil(nl,n2),dst(nl,n2)
CMFSLAYOUT vec(:serial,,),w(:serial,,),resid(,)
CMFSLAYOUT src(,),srcl(,).dst(,)

On-Line Example

The on-line example illustrates the use of sym_lanczos to extract a few eigen-
pairs of a discretized Laplace operator in three dimensions. Vectors are
represented as three-dimensional arrays, the natural data structure for this prob-
lem. Because the three dimensions are equal, there is a three-fold degeneracy of
the eigenvalues. For that reason the convergence is rather slow even though the
largest eigenvalues are extracted. The tolerance is set close to machine precision
to ensure extraction of multiple eigenvalues. For the location of the on-line
example, see the man page.

Acknowledgments

The sym_lanczos routine is a CM Fortran adaptation for the CM of a Fortran77
code written by D. Sorensen and P. Vu at the Center for Research on Parallel
Computation, Rice University (see reference 12). The portions of the code oper-
ating on front-end arrays make use of LAPACK -(see reference 16) and BLAS
routines which have been integrated so that sym_lanczos is self-contained.
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Selected Eigenvalue and Eigenvector
Analysis Using a k-Step Lanczos Method

The sym_lanczos routine finds selected solutions {A, x} to the real standard or generalized
eigenvalue problem Lx = ABx. B can be positive semi-definite and is the identity for the
standard eigenproblem. The operator L must be real and symmetric with respect to B; that
is, BL = LTB. The algorithm used is a k-step Lanczos algorithm with implicit restart. The
routine uses a reverse communication interface. You must call sym_lanczos iteratively;
sym_lanczos returns control to the calling program whenever it requires the action of the
operator L or B on a vector. You must supply the routines that perform these actions.

SYNTAX

sym_lanczos_setup (resid, vec, w, nv, setup, ier)

sym_lanczos  (ido, type, which, k, tol, resid, nv, vec, iparam, src, srcl, dst, ipntr, w,
work, lwork, info, setup)

deallocate_sym_lanczos_setup (setup)

ARGUMENTS

ido Scalar integer variable. Reverse communication flag. ido must be
zero on the first call to sym_lanczos. The sym_lanczos routine sets
ido to indicate the type of operation to be performed by the calling
program. The calling program has the responsibility of carrying
out the requested operation and calling sym_lanczos again. The
values of ido have the meanings listed below. All values except 0
are returned to the calling program.

0 The calling program supplies this value on the
first call to sym_lanczos.
-1 The calling program must compute y = Lx, where
src contains x

dst contains y
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This value is for the initialization phase, and is
used to force the starting vector into the range of
L.
1 The calling program must compute y = Lx, where
sre¢ contains x
dst contains y
srcl contains Bx

2 The calling program must compute y = Bx, where
sr¢ contains x

dst contains y

3 The calling program must compute and store the
shifts in the first nv - k locations of work. This
value is returned only if you previously assigned
iparam(1) the value 0.

99 The computation is complete.

After the initialization phase, when the routine is used in either the
shift-invert mode or the Cayley transform mode (see the
Description section below), the vector Bx is already available; you
need not recompute it in forming Lx.

type Front-end string variable declared as character*1. The value you
supply specifies the type of eigenvalue problem, as follows:
T Standard eigenvalue problem, Ax = Ax
G’ Generalized eigenvalue problem, Ax = ABx
which Front-end string variable declared as character*2. Supply one of
the following values:
LA Compute the k largest (algebraic) eigenvalues.
SA’ Compute the k smallest (algebraic) eigenvalues.
LM’ Compute the k largest (in magnitude)
eigenvalues.
SM’ Compute the k smallest (in magnitude)
eigenvalues.
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356

tol

resid

ny

vec

’BE’ Compute k eigenvalues, half from each end of the
spectrum. When £ is odd, compute one more
from the high end than from the low end.

Scalar integer variable. The number of eigenvalues of L to be
computed.

Scalar real variable. The stopping criterion. The relative accuracy
of the ith Ritz value is considered acceptable if bounds(i) <
tol* ABS(ritz(i)), where bounds(k) and ritz(k) are arrays located
within work, with starting locations work(ipntr(7)) and
work(ipntr(6)), respectively. The error bound bounds(i)
associated with Ritz value ritz(i) is given by the product of the
norm of the current residual and the last component of the
eigenvector corresponding to ritz(i). If the tol value you supply is
less than or equal to 0, tol defaults to the machine precision.

Real CM array of rank greater than or equal to 1. The product of
the axis extents must be equal to the size of the eigenproblem. If
you set info to 0, resid is set to a random initial residual vector
internally. If info is not 0, you must supply the initial residual
vector in resid,

Upon final return, resid contains the final residual vector.

Scalar integer variable. The declared extent of the first axis of vec.
Must be less than or equal to the size of the eigenproblem. This
value determines how many Lanczos vectors are generated at
each iteration. After the startup phase, in which k Lanczos vectors
are generated, the algorithm generates (nv - k) Lanczos vectors at
each subsequent update iteration.

If iparam(2) is less than or equal to 0, then nv must be greater than
or equal to k. If iparam(2) is greater than 0, then nv must be
greater than or equal to 2k.

It is generally recommended that nv = 2k even if eigenvectors are
not requested. Taking nv > 2k may enhance convergence, but this
is problem-dependent. The cost of an implicit restart iteration is
roughly 2n * m? flops.

Real CM array of rank one greater than that of resid. The first axis
must have extent at least nv and must be serial. The remaining
axes must match the axes of resid in order of declaration, extents,
and layout. Upon successful final return,
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= vyec(lik,:, ..., ) are the Lanczos vectors.

" If requested by iparam(2), vec(k+1:2k, :, ..., :) are the
eigenvectors corresponding to (and in the same order as)
the converged eigenvalues.

iparam One-dimensional front-end integer array of length 5.

iparam(1) Specifies the method for selecting the implicit
shifts. Supply one of the values listed below. The
shifts selected at each iteration are used to filter
out the components of the unwanted eigenvector.

0 The shifts are to be provided by the user
via reverse communication when ido = 3.

1 sym_lanczos applies exact shifts with
respect to the reduced tridiagonal matrix.
Using exact shifts is equivalent to restart-
ing the iteration from the beginning after
updating the starting vector with a linear
combination of Ritz vectors associated
with the desired eigenvalues.

iparam(2) Specifies whether eigenvectors are to be
computed, as follows:

iparam(2) <0 Compute only the eigenva-
lues.

iparam(2) > 0 Compute both eigenvalues
and eigenvectors.

iparam(3) On input, specifies the maximum number of
Lanczos update iterations allowed. On return, is
set to the actual number of Lanczos update
iterations performed.

iparam(4) Block size to be used in the recurrence. Must be
set to 1 in the current release.

iparam(5) On return, specifies the number of converged
eigenvalues.

sre Real CM array of the same rank, shape, and layout as resid.
Contains the current operand vector x.
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ipntr

work

Iwork

Real CM array of the same rank, shape, and layout as resid.
Contains the vector Bx (used in shift-invert mode).

Real CM array of the same rank, shape, and layout as resid.
Contains the current result vector y.

One-dimensional front-end integer array of length 7. On return,
contains pointers to mark the locations in the work array for
matrices and/or vectors used by the Lanczos iteration.

ipntr(1)  Reserved for internal use.
ipntr(2)  Reserved for internal use.
ipntr(3)  Reserved for internal use.

ipntr(4)  Points to the next available location in work that
is untouched by the program.

ipntr(S)  Points to the starting location of the (nv+1) x 2
tridiagonal matrix in work.

ipntr(6)  Points to the starting location of the Ritz values
array, ritz, in work. Upon successful final return,

the first k values of ritz are the desired
eigenvalues, returned in increasing order.

ipntr(7)  Points to the starting location of the error bounds
array, bounds, in work.

Real CM array with rank one greater than that of resid. The first
axis must have extent at least 3 and must be serial. The remaining
axes must match the axes of resid in order of declaration, extents,
and layout. This array is used internally.

Real one-dimensional front-end array of length Iwork. If
iparam(2) is greater than 0, the eigenvectors of the final
tridiagonal matrix (see ipntr(5)) are returned in the first k2
locations of work, stored by columns.
Scalar integer variable. Supply the declared dimension of work. If
LW1=nv(nv + 1)
LW2 = k(k + 4)
LW3 = 4ny + 2
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then

= If iparam(2) is less than or equal to 0, lwork must be at
least LW1 + LW3.

® If iparam(2) is greater than 0, lwork must be at least
MAX(LW1, LW2) + LW3,

info Scalar integer variable. The input value affects the initial residual
vector, as follows:

= If info = 0, resid is set to a random initial residual vector
internally.

= If info is not 0, you must supply the initial residual vector
in resid.

On return, info contains one of the following error codes:
0 Normal exit.
-2 k must be positive.

-3 nv must be greater than k (or 2k, when eigenvec-
tors are requested), and less than or equal to the
size of the eigenproblem.

-4 The maximum number of Lanczos update itera-
tions must be greater than zero.

-5 which must be one of the following: 'LM’, *SM’,
’LA’, ’SA’ or "BE’.

-6 type must be T’ or ’G’.
-7 The length of work is not sufficien..

-8 Error return from the tridiagonal eigenvalue cal-
culation.

-9 Starting vector is zero.

-9999 Maximum number of Lanczos update iterations
have occurred.
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One-dimensional integer array of length 3. Internal variable.
When you call sym_lanczos or deallocate_sym_lanczos_setup,
supply the values returned by sym_lanczos_setup.

Scalar integer variable. Set to 0 upon successful return. Upon
return from sym_lanczos_setup, may contain the following error

setup
ier
codes:
-1
-2
-3
-4
DESCRIPTION

360

The first dimension of vec or w is not declared
:serial.

The serial dimension of vec or w has extent less
than nv or 3, respectively.

(rank vec), (rank w), and (rank resid + 1) are not
equal.

The sections of vec and w containing the vectors
and indexed by the first dimension do not have
the same shape as resid.

intended Use. The sym_lanczos routine solves the following eigenproblems:

Ax = \x, A symmetric, L=A,B = L.

Ax = AMx, A symmetric, M symmetric positive definite, L = M-14, B= M.

Kx = AMx, K symmetric, M symmetric semi-definite, L = (K-oM)"IM,B=M

(shift-invert mode).

Kx = AKGx, K symmetric positive semi-definite, KG symmetric indefinite,
L = (K-6KG) 1K, B = K (shift-invert mode).

Ax = AMx, A symmetric, M symmetric positive definite, L = (4 - cM)~1(4 +
oM), B = M (Cayley transform mode).

Setup and Deallocation. To use sym_lanczos, follow these steps:

1.

Call sym_lanczos_setup.
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This routine generates three setup IDs and returns them in the array setup of
length 3. You must supply this setup array in all subsequent sym_lanczos and
deallocate_sym_lanczos_setup calls associated with this setup call.

2. Call sym_lanczos iteratively, as described under Reverse Communication
Interface, below.

You can use the same setup array to solve more than one eigenproblem
sequentially, as long as the array geometries are the same. You can also have
more than one setup active at a time.

3. Call deallocate_sym_lanczos_setup.
This routine deallocates the memory associated with the three setup IDs.

Returned Eigenvalues and Eigenvectors. Upon successful final return,

= The k desired eigenvalues are located (in algebraically increasing order) in the
first k locations of ritz. The argument ipntr(6) points to the starting location of
the ritz array within work.

* If eigenvectors are requested (iparam(2) > 0), the corresponding eigenvectors
are returned in vec(k+1:2k, , ..., 3).

Reverse Communication Interface. The aim of the reverse communication interface
is to isolate the matrix-vector operations from the k-step Lanczos code. Such opera-
tions are performed by routines you supply, on data structures which are the most
natural to the problem at hand. To this end, you must call sym_lanczos iteratively. It
returns control to the calling routine whenever the action of operators L or B on vectors
is required. The reverse communication flag, ido, which must be 0 on input to the first
call to sym_lanczos, dictates which operator is to be applied. For standard eigenvalue
problems, there is no distinction between ido = 1 and ido = -1. In both cases, the opera-
tion y = Lx is required, where x and y are the source and destination vectors, src and dst,
respectively. For the generalized eigenvalue problem, the operation y = Lx is always
done in two steps, since L is a product of operators. The only difference between ido =
1 and ido = -1 is that when ido = 1, the product Bx is already available in srcI and need
not be computed, whereas it must be computed explicitly when ido = -1. The value ido
= -1 is returned by sym_lanczos at the first iteration to force the starting vector into the
range of L (see reference 14). For generalized eigenproblems, sym_lanczos also returns
the value ido = 2, calling for the operation y = Bx to be executed.
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NOTES

Use of Array w. Do not use the CM array w as temporary workspace.

Data Layout. The CM arrays resid, src, srcl, dst, vec, and w must adhere to several
constraints with regard to shape and layout. Arrays resid, src, srcl, and dst each con-
tain a vector, while vec and w are collections of vectors. You may represent each vector
with an array of arbitrary dimension, in the manner that is the most natural with respect
to the matrix-vector operations. The product of the axis extents of the arrays represent-
ing the vectors must be equal to the size of the eigenproblem. Arrays resid, sre, srcl,
and dst must have the same shape and layout. Furthermore, vec and w must each have
an extra (instance) axis, which must be the first axis and must have extent at least nv in
vec and at least 3 in w. This axis must be made local to a processing element so that the
vectors, which have identical shape and layout, are “stacked up” in memory. This is
accomplished by declaring the instance axis :serlal in the calling program using a
CMFSLAYOUT directive.

For example, in the one-dimensional case where the size of the eigenproblem is n,
array declarations would be as follows:

real vec(nv,n),w(3,n),resid(n),src(n),srci(n),dst(n)
CMFSLAYOUT vec(:serial,),w(:serial,),resid()
CMF$LAYOUT src(),srcl(),dst()

In the two-dimensional case where the size of the problem is nl * n2 = n, the array
declarations would be

real vec(nv,nl,n2),w(3,n1,n2),resid(n1,n2)

real src(ni,n2),srcil(nl,n2),dst(ni,n2)
CMFSLAYOUT vec(:serial,,),w(:serial,,),resid(,)
CMFSLAYOUT src(,),srxci(,),dst(,)

On-Line Example. The on-line example illustrates the use of sym_lanczos to extract a
few eigenpairs of a discretized Laplace operator in three dimensions. Vectors are repre-
sented as three-dimensional arrays, the natural data structure for this problem. Because
the three dimensions are equal, there is a three-fold degeneracy of the eigenvalues. For
that reason the convergence is rather slow even though the largest eigenvalues are
extracted. The tolerance is set close to machine precision to ensure extraction of multi-
ple eigenvalues. For the location of the on-line example, see below.

Acknowledgments. The sym_lanczos routine is a CM Fortran adaptation for the CM
of a Fortran77 code written by D. Sorensen and P. Vu at the Center for Research on
Paralle]l Computation, Rice University (see reference 12 in Section 8.10). The portions
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of the code operating on front-end arrays make use of LAPACK (see reference 16) and
BLAS routines which have been integrated so that sym_lanczos is self-contained.

EXAMPLES

Sample CM Fortran code that uses the sym_lanczos routine can be found on-line in the
subdirectory

elgen/lanczos/cmf/

of a CMSSL examples directory whose location is site-specific.
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Using a k-Step Arnoldi Method

8.9.1

364

The gen_arnoldi routine finds selected solutions {A, x} to the real standard or
generalized eigenvalue problem

Lx = ABx.

B is symmetric and can be positive semi-definite; it is the identity for the stan-
dard eigenproblem.

The algorithm used is a k-step Arnoldi algorithm with implicit restart (see refer-
ence 12 in Section 8.10). The gen_arnoldi routine uses a reverse communication
interface. You must call gen_arnoldi iteratively; gen_arnoldi returns control to the
calling program whenever it requires the action of the operator L or B on a vector.
You must supply the routines that perform these actions.

For a detailed description of gen_arnoldi and its associated setup and deallocation
routines, gen_arnoldi_setup and deallocate_gen_arnoldi_setup, refer to the man
page following this section.

If L is symmetric with respect to B (BL = LTB), you can save significant time by
using sym_lanczos (described in the Version 3.0 CMSSL documentation) rather
than gen_arnoldi.

The k-Step Arnoldi Algorithm

The k-step Arnoldi algorithm with implicit restart is described in full detail in
reference 12. The k-step Arnoldi algorithm first performs & steps of the Arnoldi
factorization of L,

LV = PBH® + fBgT 1)

where V = [v4, vy, ..., %] has columns orthonormal with respect to B, H is a Hes-
senberg matrix of order k, and r®¢;T is called the residual vector. The starting
Arnoldi vector v; is generated internally if you set the argument info to 0 on
input; otherwise you must supply it. The goal is to update the original Amoldi
factorization of size k (1) in order to drive the residual vector iteratively to zero.
This is achieved by forcing the starting vector v; into a subspace spanned by the
eigenvectors corresponding to the k desired eigenvalues. This purification of the
starting vector is accomplished by filtering out the components corresponding to
eigenvalues not in the desired portion of the spectrum. To this aim, the sequence
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(1) is advanced nv - k steps further. The Rayleigh-Ritz procedure applied to the
Ammnoldi subspace of dimension nv yields approximations to k desired eigenva-
lues, but also approximations to nv - k unwanted eigenvalues. The filtering
process is done implicitly through QR factorizations of H using those
“unwanted” nv - k Ritz values as shifts. The Arnoldi vectors and the residual are
updated accordingly to yield an updated Arnoldi k-step factorization of the same
form as (1). The updated Arnoldi factorization is then advanced again nv - k
steps, and implicit filtering performed. Call this sequence of operations an
Amoldi update iteration. The k-step method iterates until k Ritz values approxi-
mate the k desired eigenvalues to a prescribed accuracy, tol, which defaults to
machine precision.

Input Arguments and Data Structures

The argument  is usually set to the desired number of eigenvalues. The total size
of the Amoldi subspace, nv, must be at least k or 2k, depending on whether the
eigenvectors are sought, but has no upper bound other than the size of the eigen-
problem (or the memory available in the machine). It is generally recommended
that nv = 2k even if eigenvectors are not requested. Taking nv > 2k may enhance
convergence, but this is problem-dependent. The cost of an implicit restart itera-
tion is roughly 2n * m? flops.

The nv columns of the matrix V (the Arnoldi vectors) are stored as rows in the
CM array vec(1:nv,...). The current residual vector is stored in the CM array resid.
Internally generated exact shifts (i.e., “unwanted” Ritz values) are used when
iparam(1) = 1. This is the recommended option. However, it is also possible to
supply nv - k external shift values by setting iparam(1) = 0. It may be advanta-
geous to supply the roots of a specially constructed filter polynomial when a
priori knowledge about the spectrum is available. Polynomials of degree higher
than nv - k may be applied in a cyclic fashion, supplying nv - k roots at a time.

The maximum number of Arnoldi update iterations is specified in iparam(3).
The real and imaginary parts of the Ritz values are found in the arrays ritzr and
ritzi, stored in work at locations ipntr(6) and ipntr(7), respectively. Residual
bounds are in the array bounds stored in work starting at location ipntr(8). After
the final iteration, the first k values in ritzr and ritzi contain the real and imagi-
nary parts, respectively, of the desired eigenvalues, and the k vectors stored in
vec(k+1:2k,...) are the corresponding eigenvectors. In the case of complex conju-
gate pairs, the eigenvalue with positive imaginary part is always first. Hence, if
the jth and (j+1)st eigenvalues are the conjugate pair a+if and a.-if, then ritzr(j)
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8.9.3

366

= ritzr(j+1) = a, ritzi(j) = B, and ritzi(j+1) = -p. Corresponding eigenvectors are
u+iv and u-iv, with u = vee(k+j, :, ..., ;) and v = vec(k+j+1, :, ..., 2).

Reverse Communication Interface

The aim of the reverse communication interface is to isolate the matrix-vector
operations from the k-step Amoldi code. Such operations are performed by rou-
tines you supply, on data structures which are the most natural to the problem at
hand. To this end, you must call gen_arnoldi iteratively. It returns control to the
calling routine whenever the action of operators L or B on vectors is required.
The reverse communication flag, ido, which must be 0 on input to the first call
to gen_arnoldi, dictates which operator is to be applied. The source and destina-
tion vectors are contained in the arrays srec and dst, respectively. An extra source
array, srcl, is needed in some cases.

For standard eigenvalue problems, there is no distinction between ido = 1 and ido
= —1. In both cases, the operation y = Lx is required, where x and y are the source
and destination vectors, respectively. For the generalized eigenvalue problem,
the operation y = Lx is always done in two steps, since L is a product of operators.
The only difference between ido = 1 and ido = -1 is that when ido = 1, the prod-
uct Bx is already available in the array srcl and need not be computed, whereas
it must be computed explicitly when ido = -1. The value ido = -1 is returned by
gen_arnoldl at the first iteration to force the starting vector into the range of L
(see reference 14). For generalized eigenproblems, gen_arnoldi also returns the
value ido = 2, calling for the operation y = Bx to be executed.

We now give examples of reverse communication. We assume the vectors are
represented as one-dimensional arrays:
real resid(n),w(3,n),vec(nv,n), temp_array (n)
real src(n),srci(n),dst(n)
CMFSLAYOUT resid(),w(:serial,),vec(:serial,),temp_array ()
CMF$LAYOUT src(), srcl{), dst()

and the setup is called successfully:

call gen_arnoldi_setup(resid, vec,w,nv, setup, ier)
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Example 1

Suppose we want to solve Ax = Ax in regular mode (L = A and B = I). Assume
that a call to matvecA(4, x, y) computes y = Ax, and that exact shifts are used.
Reverse communication would occur as follows:

ido = 0
10 continue

call gen_arnoldi(ido, ‘I’, which, k, tol, resid, nv, vec,
& iparam, src, srcl, dst, ipntr, w, work,
& lwork, info,setup)

if (ido .eq. -1 .or. ido .eg. 1) then
call matvecA (A, src, dst)

else
stop

end if

go to 10

Example 2

Suppose we want to solve Ax = Ax in shift-invert mode. Then L = (A-cl)~! and
B = I, 6 may be complex. Assume that a call to solve(4, o, x, y) solves (4-al)x
=y (possibly in complex arithmetic), and that exact shifts are used. Reverse com-
munication would occur as follows:

ido = 0
10 continue
call gen_arnoldi(ido, ‘I’, which, k, tol, resid, nv, vec,

& iparam, src, srcil, dst,
& ipntr, w, work, lwork, info, setup)

if (ido .eq. -1 .or. ido .eq. 1) then

call solve (A, sigma, complex array, SIc)
dst = real (complex array)

else
stop

end if

go to 10
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Example 3

Suppose now we want to solve Ax = AMx in shift-invert mode. Then L = (A-
oM)~M and B = M; o may be complex. Assume that a call to matvecM(M,x,y)
computes y = Mx, a call to solve(4, M, g, x, y) solves (A-cM)x = y (possibly in
complex arithmetic), and exact shifts are used. We would have in this case

ido = 0
10 continue

call gen_arnoldi (ido, ’'G’, which, k, tol, resid,
& nv, vec, iparam, src, srcl, dst,
& ipntr, w, work, lwork, info, setup)

if (ido .eq. -1) then

call matvecM (M, src, temp_array)
call solve (A, M, sigma, complex array, temp array)
dst = real(complex_array)

else if (ido .eq. 1) then

call solve (A, M, sigma, complex array, srcl)
dst = real(complex array)

else if (ido .eq. 2) then
call matvecM(M, src, dst)

else
stop

end if

go to 10

8.9.4 Data Layout Requirement

The CM arrays resid, src, srcl, dst, vec, and w must adhere to several constraints
with regard to shape and layout. Arrays resid, src, srcl, and dst each contain a
vector, while vec and w are collections of vectors. You may represent each vector
with an array of arbitrary dimension, in the manner that is the most natural with
respect to the matrix-vector operations. The product of the axis extents of the
arrays representing the vectors must be equal to the size of the eigenproblem.
Arrays resid, src, srcl, and dst must have the same shape and layout. Further-
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8.9.5

8.9.6
a'ws

more, vec and w must each have an extra (instance) axis, which must be the first
axis and must have extent at least nv in vec and at least 3 in w. This axis must
be made local to a processing element so that the vectors, which have identical
shape and layout, are “stacked up” in memory. This is accomplished by declaring
the instance axis :serial in the calling program using a CMF$LAYOUT directive.

For example, in the one-dimensional case where the size of the eigenproblem is
n, array declarations would be as follows:

real vec(nv,n),w(3,n),resid(n),src(n),srcl(n),dst(n)
CMF$LAYOUT vec(:serial,),w(:serial,),resid()
CMFS$LAYOUT src(),srcl(),dst()

In the two-dimensional case where the size of the problem is nl * n2 = n, the
array declarations would be

real vec(nv,nl,n2),w(3,nl,n2),resid(nl,n2)

real src(ni,n2),srcl{(nl.n2),dst(nl,n2)
CMF$LAYOUT vec(:serial,,),w{:serial,,),resid(,)
CMF$LAYOUT src(,),srcl(,),dst(,)

On-Line Example

The on-line gen_arnoldi example is taken from the aeronautical industry. The so-
called Tolosa matrix comes from the Aerospatiale Aircraft Division in Toulouse,
France. It is part of the Harwell-Boeing collection (see reference 18). The eigen-
values with largest imaginary part are of interest to engineers. The matrix is very
sparse with a block structure and is of order N=90+5k where k is an integer
greater than 1. In the example, we choose k=782; hence, N=4000. The default of
normality, which grows exponentially with N for this matrix, accounts for the
discrepancy between the estimated bounds and the actual residuals (see reference
19). For the location of the on-line example, see the man page.
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Selected Eigenvalue and Eigenvector
Analysis Using a k-Step Arnoldi Method

The gen_arnoldi routine finds selected solutions {A, x} to the real standard or generalized
eigenvalue problem Lx = ABx. B is symmetric and can be positive semi-definite; it is the
identity for the standard eigenproblem. The operator L must be real but not necessarily
symmetric. The algorithm used is a k-step Armnoldi algorithm with implicit restart. The rou-
tine uses a reverse communication interface. You must call gen_arnoldi iteratively;
gen_arnoldl returns control to the calling program whenever it requires the action of the
operator L or B on a vector. You must supply the routines that perform these actions.

SYNTAX
gen_arnoldi_setup (resid, vec, w, nv, setup, ier)

gen_arnoldi (ido, type, which, k, tol, resid, nv, vec, iparam, srec, srcl, dst, ipntr, w,
work, lwork, info, setup)

deallocate_gen_arnoldi_setup  (setup)

ARGUMENTS

ido Scalar integer variable. Reverse communication flag. ido must be
zero on the first call to gen_arnoldi. The gen_arnoldi routine sets
ido to indicate the type of operation to be performed by the calling
program. The calling program has the responsibility of carrying
out the requested operation and calling gen_arnoidi again. The
values of ido have the meanings listed below. All values except 0
are returned to the calling program.

0 The calling program supplies this value on the
first call to gen_arnoldi.

-1 The calling program must compute y = Lx, where
src contains x

dst contains y
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This value is for the initialization phase, and is
used to force the starting vector into the range of
L.
1 The calling program must compute y = Lx, where
src contains x
dst contains y
srcl contains Bx

2 The calling program must compute y = Bx, where
src contains x

dst contains y

3 The calling program must compute and store the
real and imaginary parts of the shifts in the first
2(nv - k) locations of work. This value is returned
only if you previously assigned iparam(1) the
value 0.

99 The computation is complete.

After the initialization phase, when the routine is used in shift-
invert mode (see the Description section below), the vector Bx is
already available; you need not recompute it in forming Lx.

type Front-end string variable declared as character*1. The value you
supply specifies the type of eigenvalue problem, as follows:
T Standard eigenvalue problem, Ax = Ax
G’ Generalized eigenvalue problem, Ax = ABx
which Front-end string variable declared as character*2. Supply one of
the following values:
LM’ Compute the k eigenvalues of largest magnitude.
SM’ Compute the k eigenvalues of smallest
magnitude.
LR’ Compute the k eigenvalues with largest real part.
"SR’ Compute the k eigenvalues with smallest real
part.
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LI Compute the k eigenvalues with largest
imaginary part.
*ST Compute the k eigenvalues with smallest
imaginary part.
k Scalar integer variable. The number of eigenvalues of L to be
computed.
tol Scalar real variable. The stopping criterion. The relative accuracy

of the jth Ritz value is considered acceptable if bounds(j) <
tol*|(ritz(j)|, where ritz(j)=ritzr(j)+i*ritzi(j), and where rirzr(k),
ritzi(k), and bounds(k) are arrays located within work, with
starting locations work(ipntr(6)), work(ipntr(7)), and
work(ipntr(8)), respectively. The error bound bounds(j)
associated with Ritz value ritz(j) is given by the product of the
norm of the current residual and the last component of the
eigenvector corresponding to ritz(j). If the tol value you supply is
less than or equal to 0, ol defaults to the machine precision.

resid Real CM array of rank greater than or equal to 1. The product of
the axis extents must be equal to the size of the eigenproblem. If
you set info to 0, resid is set to a random initial residual vector
internally. If info is not 0, you must supply the initial residual
vector in resid.

Upon final return, resid contains the final residual vector.

nv Scalar integer variable. The declared extent of the first axis of vec.
Must be less than or equal to the size of the eigenproblem. This
value determines how many Arnoldi vectors are generated at each
iteration. After the startup phase, in which k Armoldi vectors are
generated, the algorithm generates (nv - k) Arnoldi vectors at each
subsequent update iteration.

If iparam(2) is less than or equal to 0, then #v must be greater than
or equal to k. If iparam(2) is greater than 0, then nv must be
greater than or equal to 2k.

It is generally recommended that nv = 2k even if eigenvectors are
not requested. Taking nv > 2k may enhance convergence, but this
is problem-dependent. The cost of an implicit restart iteration is
roughly 2n * m? flops.
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vee Real CM array of rank one greater than that of resid. The first axis
must have extent at least nv and must be serial. The remaining
axes must match the axes of resid in order of declaration, extents,
and layout. Upon successful final return,

=  vec(lik, :, ..., :) are the Arnoldi vectors.

» If requested by iparam(2), vec(k+1:2k, :, ..., :) are the
eigenvectors corresponding to (and in the same order as)
the converged eigenvalues. In the case of complex conju-
gate pairs, the eigenvalue with positive imaginary part is
always first. Hence, if the jth and (j+1)st eigenvalues are
the conjugate pair a+if and a~ip, then ritzr(j) = ritzr(j+1)
= a,, ritzi(j) = B, and ritzi(j+1) = -p. Corresponding eigen-
vectors are u+iv and u-iv, with u = vec(k+j, ., ..., :) and v
= yec(k+j+1, :, ..., 2).

iparam One-dimensional front-end integer array of length 5.

iparam(1) Specifies the method for selecting the implicit
shifts. Supply one of the values listed below. The
shifts selected at each iteration are used to filter
out the components of the unwanted eigenvector.

0 The shifts are to be provided by the user
via reverse communication when ido = 3.
The real and imaginary parts of the nv
eigenvalues of the Hessenberg matrix H
are returned in the parts of the work array
corresponding to ritzr and ritzi, respec-
tively.

1 gen_arnoldi applies exact shifts with
respect to the current Hessenberg matrix
H. Using exact shifts is equivalent to
restarting the iteration from the begin-
ning after updating the starting vector
with a linear combination of Ritz vectors
associated with the desired eigenvalues.

iparam(2) Specifies whether eigenvectors are to be
computed, as follows:

iparam(2) <0 Compute only the eigenva-
lues.
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iparam(3)

iparam(4)

iparam(5)
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iparam(2) >0 Compute both eigenvalues
and eigenvectors.

On input, specifies the maximum number of
Armoldi update iterations allowed. On return, is
set to the actual number of Arnoldi update
iterations performed.

Block size to be used in the recurrence. Must be
set to 1 in the current release.

On return, specifies the number of converged
eigenvalues, nconv.

src " Real CM array of the same rank, shape, and layout as resid.
Contains the current operand vector x.

srel Real CM array of the same rank, shape, and layout as resid.
Contains the vector Bx (used in shift-invert mode).

dst Real CM array of the same rank, shape, and layout as resid.
Contains the current result vector y.

ipntr One-dimensional front-end integer array of length 8. On return,
contains pointers to mark the locations in work array for matrices
and/or vectors used by the Arnoldi iteration.

ipntr(1)
ipntr(2)
ipntr(3)
ipntr(4)

ipntr(5)

ipntr(6)

ipntr(7)

Version 3.1, June 1993
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Reserved for internal use.
Reserved for internal use.
Reserved for internal use.

Points to the next available location in work that
is untouched by the program.

Points to the starting location of the (nv+1) X nv
upper Hessenberg matrix in work.

Points to the starting location of the real part of
the Ritz values array, ritzr, in work.

Points to the starting location of the imaginary
part of the Ritz values array, ritzi, in work.
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ipntr(8)  Points to the starting location of the error bounds
array, bounds, in work.

Real CM array with rank one greater than that of resid. The first
axis must have extent at least 3 and must be serial. The remaining
axes must match the axes of resid in order of declaration, extents,
and layout. This array is used internally.

Real one-dimensional front-end array of length lwork. If
iparam(2) is greater than 0, the eigenvectors of the final
Hessenberg matrix (see ipntr(5)) are returned in the first k2
locations of work, stored by columns. When the jth and (j+1)st
Ritz values are the conjugate pair a+if and a-ip, the
corresponding eigenvectors are u+iv and u-iv, with u in the (k+))th
column and v in the (k+j+1)st column.

Scalar integer variable. Supply the declared dimension of work.
Maust be at least 3mv2 + 6nv.

Scalar integer variable. The input value affects the initial residual
vector, as follows:

= If info = 0, resid is set to a random initial residual vector
internally.

= If info is not 0, you must supply the initial residual vector
in resid.
On return, info contains one of the following error codes:
0 Normal exit.

1 All possible eigenvalues of the operator L have
been found. nconv = iparam(5) is equal to the
size of the invariant subspace spanning the opera-
tor L.

2 The eigenvectors are requested but there is not
enough space in vec to carry out the computation
because nconv > k. To obtain the eigenvectors,
rerun with k equal to nconv = iparam(5).

-2 k must be positive.
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-3 nv must be greater than k (or 2k, when eigenvec-
tors are requested), and less than or equal to the
size of the eigenproblem.

-4 The maximum number of Arnoldi update itera-
tions must be greater than zero.

-5 which must be one of the following: "LM’, *SM’,
,LR,, ’SR’, ’LI!’ ,SI’-

-6 type must be ‘T’ or °G’.

-7 The length of work is not sufficient.

-8 Error return from the LAPACK Hessenberg eigen-
value calculation.

-9 Starting vector is zero.

-9999 Maximum number of Arnoldi update iterations
have occurred.

G setup One-dimensional integer array of length 3. Internal variable.
When you call gen_arnoldl or deallocate_gen_arnoldi_setup,
supply the values returned by gen_arnoldi_setup.

ier Scalar integer variable. Set to 0 upon successful return. Upon
return from gen_arnoldi_setup, may contain the following error
codes:

-1 The first dimension of vec or w is not declared
:serial.

-2 The serial dimension of vec or w has extent less
than nv or 3, respectively.

-3 (rank vec), (rank w), and (rank resid + 1) are not
equal.

-4 The sections of vec and w containing the vectors
and indexed by the first dimension do not have
the same shape as resid.

A
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DESCRIPTION

Intended Use. The gen_arnoldl routine solves the following eigenproblems:
®  Ax = )\x, A symmetric, L=A,B=1.
" Ax = AMx, M symmetric positive definite, L = M-14, B= M.

" Ax = AMx, M symmetric semi-definite, L = Re{(4A-oM)-1M}, B = M (shift-in-
vert mode, in real arithmetic). If Lx = ux and o denotes the complex conjugate
of o,thenp =1/2[ 1/A - ) + 1/(A - 0) ].

®  Ax = AMx, M symmetric semi-definite, L = Im{(4-0cM)~1M}, B = M (shift-in-
vert mode, in real arithmetic). If Lx = px, then p = 1/2i [ 1/(A - o) - 1/(A - 0)].

The third and fourth modes above provide the same enhancement for eigenvalues close
to the (complex) shift 0. However, as A goes to infinity, the operator L in the fourth
mode dampens the eigenvalues more strongly than does L as defined in the third mode.

Setup and Deallocation. To use gen_arnoldi, follow these steps:

1. Call gen_arnoldi_setup.

This routine generates three setup IDs and returns them in the array setup of
length 3. You must supply this sefup array in all subsequent gen_arnoldi and
deallocate_gen_arnoldi_setup calls associated with this setup call.

2. Call gen_arnoldi iteratively, as described under Reverse Communication
Interface, below.

You can use the same setup array to solve more than one eigenproblem
sequentially, as long as the array geometries are the same. You can also have
more than one setup active at a time.

3. Call deallocate_gen_arnoldi_setup.

This routine deallocates the memory associated with the three setup IDs.

Fleturned Eigenvalues and Eigenvectors. Upon successful final return,

®  The real parts of the k desired eigenvalues are located in the first k locations of
ritzr. The argument ipntr(6) points to the starting location of the ritzr array
within work.
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®  The imaginary parts of the k desired eigenvalues are located in the first & loca-
tions of ritzi. The argument ipntr(7) points to the starting location of the rizzi
array within work.

= If eigenvectors are requested (iparam(2) > 0), the corresponding eigenvectors
are returned in vec(k+1:2k, :, ..., :). In the case of complex conjugate pairs, the
eigenvalue with positive imaginary part is always first. Hence, if the jth and
(j+1)st eigenvalues are the conjugate pair a+iff and a-if, then ritzr(j) =
ritzr(j+1) = a, ritzi(j) = P, and ritzi(j+1) = -p. Corresponding eigenvectors are
u+iv and u-iv, with u = vec(k+j, , ..., :) and v = vec(k+j+1, :, ..., 2).

Reverse Communication Interface. The aim of the reverse communication interface
is to isolate the matrix-vector operations from the k-step Amoldi code. Such operations
are performed by routines you supply, on data structures which are the most natural to
the problem at hand. To this end, you must call gen_arnoldi iteratively. It returns con-
trol to the calling routine whenever the action of operators L or B on vectors is
required. The reverse communication flag, ido, which must be 0 on input to the first
call to gen_arnoldi, dictates which operator is to be applied. For standard eigenvalue
problems, there is no distinction between ido = 1 and ido = -1. In both cases, the opera-
tion y = Lx is required, where x and y are the source and destination vectors, src and dst,
respectively. For the generalized eigenvalue problem, the operation y = Lx is always
done in two steps, since L is a product of operators. The only difference between ido =
1 and ido = -1 is that when ido = 1, the product Bx is already available in srcl and need
not be computed, whereas it must be computed explicitly when ido = -1. The value ido
= -] is returned by gen_arnoldi at the first iteration to force the starting vector into the
range of L (see reference 17 in Section 8.10). For generalized eigenproblems,
gen_arnoldi also returns the value ido = 2, calling for the operation y = Bx to be
executed.

NOTES

Use of Array w. Do not use the CM array w as temporary workspace.

Data Layout. The CM arrays resid, src, srcl, dst, vec, and w must adhere to several
constraints with regard to shape and layout. Arrays resid, src, srcl, and dst each con-
tain a vector, while vec and w are collections of vectors. You may represent each vector
with an array of arbitrary dimension, in the manner that is the most natural with respect
to the matrix-vector operations. The product of the axis extents of the arrays represent-
ing the vectors must be equal to the size of the eigenproblem. Arrays resid, src, srcl,
and dst must have the same shape and layout. Furthermore, vec and w must each have
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an extra (instance) axis, which must be the first axis and must have extent at least nv in
vec and at least 3 in w. This axis must be made local to a processing element so that the
vectors, which have identical shape and layout, are “stacked up” in memory. This is
accomplished by declaring the instance axis :serial in the calling program using a
CMFS$LAYOUT directive. ‘ '

For example, in the one-dimensional case where the size of the eigenproblem is »,
array declarations would be as follows:

real vec(nv,n),w(3,n),resid(n),src(n),srci(n),dst(n)
CMFSLAYOUT vec(:serial,),w(:serial,),resid()
CMFSLAYOUT sxc(),srcl(),dst()

In the two-dimensional case where the size of the problem is nl * n2 = n, the array
declarations would be

real vec(nv,nl,n2),w(3,n1,n2),resid(nl,n2)

real src(nl,n2),srcl(nl.n2),dst(nl,n2)
CMFSLAYOUT vec(:serial,,),w(:serial,,),resid(,)
CMF$LAYOUT src(,),srci(,),dst(,)

On-Line Example. The on-line gen_arnoldi example is taken from the aeronautical
industry. The so-called Tolosa matrix comes from the Aerospatiale Aircraft Division in
Toulouse, France. It is part of the Harwell-Boeing collection (see reference 18 in Sec-
tion 8.10). The eigenvalues with largest imaginary part are of interest to engineers. The
matrix is very sparse with a block structure and is of order N=90+5k where k is an
integer greater than 1. In the example, we choose k=782; hence, N=4000. The default
of normality, which grows exponentially with N for this matrix, accounts for the dis-
crepancy between the estimated bounds and the actual residuals (see reference 19). For
the location of the on-line example, see below.

Acknowledgments. The gen_arnoldl routine is a CM Fortran adaptation for the CM of
a Fortran77 code written by D. Sorensen and P. Vu at the Center for Research on Paral-
lel Computation, Rice University (see reference 12 in Section 8.10). The portions of
the code operating on front-end arrays make use of LAPACK (see reference 18 and
BLAS routines which have been integrated so that gen_arnoldi is self-contained.

We thank S.Godet-Thobie at CERFACS (Centre Européen de Recherche et de Forma-
tion Avancée en Calcul Scientifique) for providing us with the Tolosa matrix and the
routines to build it, which are included in the on-line example.
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EXAMPLES

Sample CM Fortran code that uses the gen_arnoldl routine can be found on-line in the
subdirectory

eigen/a;rnold:l/ cmf/

of a CMSSL examples directory whose location is site-specific.
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Fast Fourier Transform. See FFT

Fast RNG: Vol 2471
period of: Vol 2477

fast_rng: Vol 2 472, 484-491
fast_rng_residue: Jol 2 478, 484-491
fast_rng_state_field: Vol 2 478, 484-491
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defined: Vol. 2544
examples: Vol. 2 545

gather utility: Vol 2 544
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gen_lu_factor_ext: Vol. 1239
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gen_mat_block_sparse_mat_mult: 1ol 1
120, 134

gen_mat_grid_sparse_mat_mult: Vol 1
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gen_mat_sparse_mat_muit: Vol 1 105, 111
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189
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gen_matrix_transpose: Vol 2 542-547
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routines: Vol 174

gen_outer_product and related routines:
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gen_pentadiag_factor and related routines:
Vol 1281

gen_gr_factor and related routines: Vol 1
208

gen_qgr_factor_ext: Vol 1245
gen_qr_solve_ext: Vol. 1 245
gen_simplex: Vol 2 462
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gen_tridiag_factor and related routines:
Vol 1281

gen_vector_matrix_mult and related
routines: Vol 179

generalized eigensystem analysis: Vol 1
336

generalized minimal residual algoithm:
Vol 1292

generate_dual: Vol 2 583

global axis: Vol. 126

GMRES algorithm: Vol 1292

grid sparse matrix operations: Vol. 1 145

grid sparse matrix representation: Vol. 1
146

grid_sparse_mat_gen_mat_mult: Vol 1
145, 157

grid_sparse_matrix_vector_mult: 10l. ]
145, 157

grid_sparse_setup: Vol I 145,157
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header file: Vol. 148

histogram: Vol 2 501, 504-506
how to: Vol 2502

histogram_range: Vol 2 501, 506-508
Householder transformations: Vol 1 187

ill-conditioned systems: Vol I 203
infinity norm: Vol I 83
initialize_fast_rng: Vol 2 472, 484-491
initialize_vp_rng: Vol. 2 472,492
inner product: Vol 1 56

inverse iteration algorithm: Vol 1 325
iterative solvers: Vol 1291
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Jacobi rotations: Vol 1 341
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Lanczos algorithm: Vol. 1 346

convergence properties: Vol. 1 348

data layout requirements: Vol I 352, 368

implementation: Vol. 1 346

input arguments and data structures: Vol.
1347, 365

reverse communication interface: Vol. 1
349, 366

Lanczos routines, selected eigenvalues and
cigenvectors: Vol 1 346

least squares decomposition, with external
storage: Vol 1244

least squares solution, with external
storage: Vol 1245

linking: Vol 149

load balancing: Vol 2 622

local array elements: Vol. 126

local axis: Vol 126

look-ahead Lanczos algorithm: Vol. 1293

LU decomposition: Vol. 1 169
with external storage: Vol. 1 238

LU state, saving and restoring: Vol 1171

man pages, on-line: Vol 1 53

matrix inversion: Vol 1 229, 232-234
stahility and performance: Vol 1231

matrix multiplication: Vol. 1 87
with external storage: Vol 1 95

matrix transpose: Vol. 2 541
matrix vector multiplication: Vol 173

mesh, unstructured, partitioning of: Vol 2
575 :

multiple instances: Vol. 129
all-to-all rotation: Vol 1 37
Fast Fourier transforms: Vol 1 36
how to specify: Vol 131
matrix vector multiplication example:
Vol. 134
polyshift: Vol 137
OR solver example: Vol. 134
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NEWS-to-send reordering: Vol 2 633
news_to_send: 1ol 2 634
non-local axis: Vol 126

numeric stability: Vol. 137
definition: Vol. 137

numerical complexity: Vol 138
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ode_rkf and related routines: Vol 2 448
ODEs: Vol 2 445

on-line examples: Vol. 1 53

on-line man pages: Vol 153

ordinary differential equations: Vol 2 445
out-of-core LU routines: Vol 1238
out-of-core matrix multiplication: Vol 195
out-of-core OR routines: Vol. 1244
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parallel bisection algorithm: Vol. 1 321
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589

part_scatter and related routines: Vol 2
595

part_vector_gather and related Aroutines:
Vol. 2 589

part_vector_scatter and related routines:
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partitioned gather utility: Vol. 2 588
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pipelined Gaussian elimination: Vol 1257
pointers, renumbering of: Vol 2 581
pointers, reordering of: Vol 2 575, 581
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processing element: Vol 126

PSHIFT
operation: Vol. 2510

optimization recommendations: Vol 2
512

pshift: Vol 2513

pshift and related routines: Vol 2 510
pshift_setup: Vol. 2510, 513
pshift_setup_looped: 1ol 2 510, 513
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QMR algorithm: Vol. 1292

OR factorization
See also QR routines
with external storage: Vol 1 244, 245

OR factors: Vol 1190, 195

OR routines: Vol 1187
blocking and load balancing: Vol 1 194
Householder algorithm: Vol. 1 191
numerical stability: Vol 1 203
pivoting option: Vol. I 203

OR state, saving and restoring: Vol. 1207

quasi-minimal residual algorithm: Vol. 1
292

random number generators. See RNG
range histogram: Vol 2 506-508
RCFFT. See FFT

real-to-complex FFT: Vol 2 415
See also FFT

CMSSL for CM Fortran

real_from_complex: Vol. 2437
reduction to tridiagonal form: Vol 1 315
reduction, all-to-all: Vol. 2 535
reinlitialize_fast_rng: Vol. 2 484-491
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renumber_pointers: Vol 2 583
renumbering of pointers: Vol 2 581
reorder_pointers: Jol. 2 583

reordering of pointers: Vol 2 575, 581

restarted generalized minimal residual
algorithm: Vol 1292

restarted GMRES algorithm: Vol 1292
restore_fast_rng_temps: Vol 2473, 484
restore_gen_lu: Vol 1172
restore_vp_rng_temps: Vol 2 473,492

reverse communication interface: Vol 1
349, 366
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alternate stream checkpointing: Vol. 2
473

alternate-stream checkpointing: Vol. 2
480

checkpointing: Vol. 2477

Fast: Vol 2471

fast and VP compared: Vol 2 472

implementation: Vol. 2 473

period of a: Vol. 2477

safety checkpointing: Vol. 2 473, 479

saving and restoring: Vol. 2 479

state tables: Vol. 2 474-478

VP: Vol. 2471

Runge-Kutta method: Vol. 2 445
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sample code: Vol. 153
save_fast_rng_temps: Vol 2 473,478, 484
save_gen_lu: Vol. 1172
save_vp_rng_temps: Vol 2 473, 478, 492

scatter operation
defined: Vol 2 551
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scatter utility: Vol. 2 551
scatter, block: Vol. 2 568
scatter, partitioned: Vol 2 594
scatter, vector: Vol 2 563
scattering: Vol. 1103
send-to-NEWS reordering: Vol 2 633
send_to_news: Jol. 2 634
Simple FFT: Vol 2 395

simplex: Vol. 2457
algorithm: Vol. 2 457
degeneracy: Vol. 2 460
reinversion: Vol 2 459
vertices and bases: Vol 2 458

SPARC processing node: Vol 126
sparse gather utility: Vol. 2 544
sparse matrices, storage of: Vol. 1 105

sparse matrix operations
arbitrary block: Vol 1120
arbitrary elementwise: Vol 1 105
arbitrary sparse matrices: Vol I 101
gathering and scattering: Vol 1 103
grid: Vol 1145
optimization recommendations: Vol. 1

104

storage representations: Vol 1 102

sparse scatter utility: Vol 2 551

sparse vector scatter utility: Vol 2 563
sparse_mat_gen_mat_muit: Vol 1 105, 111
sparse_matvec_mult: Vol 1 105,111
sparse_matvec_setup: Jol. 1 105, 111
sparse_util_gather: Vol 2 544, 547
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statistical analysis: Vol. 2 501-508
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sym_Jacobi_eigensystem: Jol 1 341,342

sym_lanczos and related routines: Vol. 1
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sym_to_tridiag: Vol 1 315, 316
sym_tred: Vol 1315, 316
sym_tred_eigensystem: Vol 1 331,332
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trace
in communication compiler: Vol 2 600
in sparse matrix operations: Vol. 1 107,
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transpose operation: Vol 2 541
transpose, matrix: Vol 2 541
tridiag_to_sym: Jol. 1 315, 316
tridiagonal form, reduction to: Vol I 315
tridiagonal systems: Vol 1263

twiddle factors for FFT: Vol 2397
two-norm: Vol. 1 64
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unstructured mesh, partitioning of: Vol 2
575
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vector gather operation
defined: Vol 2557
examples: Vol. 2557
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vector gather utility: Vol. 2 557
vector matrix multiplication: Vol 1 78
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defined: Vol 2 563
examples: Vol. 2 563
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vp_rng: Vol 2472,492
vp_rng_residue: Vol 2 478, 492
vp_rng_state_field: ol 2 478,492
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